
Classical electrodynamics 2 Class 1

Class 1 - Laplace equation in Cartesian and spherical coordinate sys-

tems

Class material

Exercise 1.1 - Semi-in�nite rectangle
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Figure 1

On the boundary of a two-dimensional semi-in�nite rectangle the potential
is �xed as shown on Fig.1. Compute the electric potential and the electric
�eld inside the rectangle.

(a) Write down the Laplace equation for the potential in two dimensions,
and specify the corresponding boundary conditions.

(b) Using the separation of variables in Cartesian coordinates, reduce the
Laplace equation to ordinary di�erential equations.

(c) Solve the equations and impose the boundary conditions.

(d) Determine the electric �eld from the potential.

Exercise 1.2 - Charged sphere with asimuthal symmetry

Consider a sphere with radius R and surface charge density σ = σ0 cos θ. Compute the electric potential and
the electric �eld in the whole space.

(a) Write down the Laplace equation in spherical coordinates using the asimuthal symmetry and the boundary
conditions for the potential.

(b) Determine the expansion coe�cients from the boundary conditions.

(c) Determine the electric �eld from the potential.

Exercise 1.3 - Square tube-I
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Figure 2

Consider an in�nitely long metal tube along direction z of square cross
section with sides of length a. The side walls are insulated from each other
along the edges. We connect the opposite sides to each other; one pair is
grounded, while the other is kept at a potential V = V0 as shown in Fig.2.

(a) Write the Laplace equation for the electrostatic �eld inside the tube
in a suitable coordinate system.

(b) Specify the corresponding boundary conditions, and write down the
required orthogonality relations.

(c) Determine the electrostatic potential inside the tube.

(d) Determine the electrostatic �eld inside the tube.
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Exercise 1.4 - In�nite planes with alternating potential
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Figure 3

Consider two parallel conducting planes at distance h, positioned
at z = 0 and z = h respectively. The one at z = h is on zero
potential, while the one at z = 0 is sliced into stripes of width b
parallel to the x axis, which are insulated from each other, and
then impose an alternating potential ±V0 as illustrated in Fig.3.

(a) Compute the electrostatic potential Φ(x, y, z) between the
planes.

(b) Determine the ~E eletric �eld along the z axis in the 0 ≤
z ≤ h range.

Exercise 1.5 - Sphere with azimuthal symmetry

Consider a sphere with radius R, for which on the surface of the upper semi-sphere the potential is held at V0,
while the lower is held at −V0. Compute the electric potential and the electric �eld in the whole space.

(a) Write down the Laplace equation in spherical coordinates using the asimuthal symmetry and the boundary
conditions for the potential.

(b) Determine the expansion coe�cients from the boundary conditions.

(c) Determine the electric �eld from the potential.
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Homework

The following problems (marked with an asterisk) form the basis of the short
test at the beginning of the next class.

Exercise 1.6 - In�nite planes*

Consider two in�nite charged metallic planes parallel to the xy plane, one at z = 0 and the other at z = 0.4.
The potential on the planes in some arbitrary units is:

Φ(x, y, 0) = 5 sin(4x) cos(3y)

Φ(x, y, 0.4) = 2 sin(4x) cos(3y)

(a) Write the Laplace equation for the electrostatic �eld between the two planes in a suitable coordinate
system, and specify the corresponding boundary conditions.

(b) Determine the electric potential Φ(x, y, z) between the planes.

Exercise 1.7 - Square tube-II*
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Figure 4

Consider an in�nitely long metal tube along direction z of square cross
section with sides of length a. One of the side walls given by y = a equation
is insulated from the other sides and is held at a potential V0 potential, while
`U' formed by the other three sides is grounded as shown on Fig.4.

(a) Write the Laplace equation for the electrostatic �eld inside the tube
in a suitable coordinate system.

(b) Specify the corresponding boundary conditions, and write down the
required orthogonality relations.

(c) Determine the electrostatic potential inside the tube.

(d) Determine the electrostatic �eld inside the tube. What is the value at
the middle?

Exercise 1.8 - Charged in�nite plane*

The surface electric charge density on an in�nite plane lying at z = 0 is:

σ(x, y) = σ0 sin(αx) sin(βy)

(a) Write the Laplace equation in a suitable coordinate system for the region z > 0, and specify the corre-
sponding boundary conditions.

(b) Determine the electric potential Φ(x, y, z) in the region z > 0.

These problems are for further practice and to have some fun!

Exercise 1.9 - Two concentric spheres (Jackson 3.1)

Two concentric spheres have radii a, b (a < b) and each is divided into two hemispheres by the same horizontal
plane. The upper hemisphere of the inner sphere and the lower hemisphere of the outer sphere are maintained
at potential V . The other hemispheres are at zero potential.

Determine the potential in the region a <= r <= b as a series in Legendre polynomials. Include terms at
least up to ` = 4. Check your solution against known results in the limiting cases b→∞, and a→ a.
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Exercise 1.10 - Sphere with a neutral cap (Jackson 3.2)

A spherical surface of radius R has charge uniformly distributed over its surface with density Q/4πR2, except
for a spherical cap at the north pole, de�ned by the cone θ = α.

(a) Show that the potential inside the spherical surface can be expressed as

Φ =
Q

8πε0

∞∑
`=0

1

2`+ 1
[P`+1(cosα)− P`−1(cosα)]

r`

R`+1
P`(cos θ)

where, for ` = 0, P`−1(cosα) = −1. What is the potential outside?

(b) Find the electric �eld vector at the origin.

(c) Discuss the limiting forms of the potential from part (a) and the electric �eld from part (b) as the spherical
cap becomes (1) very small, and (2) so large that the area with charge on it becomes a very small cap at
the south pole.

Exercise 1.11 - Circular disc held at a �xed potential (Jackson 3.3)

A thin, �at, conducting, circular disc of radius R is located in the x− y plane with its center at the origin and
is maintained at �xed potential V . With the information that the charge density on a disc at �xed potential is
proportional to (R2 − ρ2)−1/2, where ρ is the distance out from the center of the disc.

(a) Show that for r > R the potential is

Φ(r, θ, φ) =
2V

π

R

r

∞∑
`=0

(−1)`

2`+ 1

(
R

r

)2`

P2`(cos θ)

(b) Find the potential for r < R.

(c) What is the capacitance of the disc?

Exercise 1.12 - Sphere with wedges kept at alternating potential (Jackson 3.4)

The surface of a hollow conducting sphere of inner radius a is divided into an even number of equal segments by
a set of planes; there common line of intersection is the z axis and they are distributed uniformly in the angle
φ. (The segments are like the skin on wedges of an apple, or the earth's surface between successice meridians
of longitude.) the segments are kept at �xed potentials ±V ,alternately.

(a) Set up a series representation for the potential inside the sphere for the general case of 2n segments, and
carry the calculation of the coe�cients in the series far enough to determine exactly which coe�cients are
di�erent from zero. For the nonvanishing terms, exhibit the coe�cients as an integral over cos θ.

(b) For the special case of n = 1 (two hemispheres) determine explicitly the potential up to and including all
terms with ` = 3. By a coordinate transformation verify that this reduces to

Φ(r, θ) = V

[
3

2

r

a
P1(cos θ)− 7

8

( r
a

)3
P3(cos θ) +

11

16

( r
a

)5
P5(cos θ) . . .

]
where we cutted the sphere horizontally.

Exercise 1.13 - Line charge inside a conducting sphere (Jackson 3.14)

A line charge of length 2d with a total charge Q has a linear charge density varying as (d2 − z2), where z is the
distance from the midpoint. A grounded, conducting, spherical shell of inner radius b > d is centered at the
midpoint of the line charge.

(a) Find the potential everywhere inside the spherical shell as an expansion in Legendre polynomials.
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(b) Calculate the surface-charge density induced on the shell.

(c) Discuss your answers to parts (a) and (b) in the limit that d� b.

Exercise 1.14 - Green's function for a square (Jackson 2.15)

(a) Show that the Green's function G(x, y;x′, y′) appropriate for Dirichlet boundary conditions for a square
two-dimensional region, 0 <= x <= 1, 0 <= y <= 1, has an expansion

G(x, y;x′, y′) = 2

∞∑
n=1

gn(y, y′) sin(nπx) sin(nπx′)

where gn(y, y′) satis�es(
∂2

∂y′ 2
− n2π2

)
gn(y, y′) = −4πδ(y′ − y) and gn(y, 0) = gn(y, 1) = 0

(b) Taking for gn(y, y′) appropriate linear combinations of sinh(nπy′) and cosh(nπy′) in the two regionsm
y′ < y and y′ > y, in accord with the boundary conditions and the discontinuity in slope required by the
source delta function, show that the explicit form of G is

G(x, y;x′, y′) = 8

∞∑
n=1

1

n sinh(nπ)
sin(nπx) sin(nπx′) sinh(nπy<) sinh(nπ(1− y>)

where y<(y>) is the smaller (larger) of y and y′.

Exercise 1.15 - Potential of a square from the Green's function (Jackson 2.16)

A two dimensional potential exists on a unit square area (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) bounded by `surfaces' held at
zero potential. Over the entire square there is a uniform charge density of unit strength (per unit length in z).
Using the Green's function of Exercise 1.14, show that the solution can be written as

Φ(x, y) =
4

π2ε0

∞∑
m=0

sin[(2m+ 1)πx]

(2m+ 1)3

{
1− cosh[(2m+ 1)π(y − 1/2)]

cosh[(2m+ 1)π/2]

}

Exercise 1.16 - Oppositely charged conducting hemispheres (Jackson 2.22)

(a) Show that, for oppositely charged conducting hemispherical shells separated by a tiny gap, the interior
potential (r < a) in the z axis is

Φin(z) = V
a

z

[
1− a2 − z2

a
√
a2 + z2

]
Find the �rst few terms of the expansion in powers of z and show that they agree with

Φ(x, θ, φ) =
3V a2

2x2

[
cos θ − 7a2

12x2

(
5

2
cos3 θ − 3

2
cos θ

)
. . .

]
with the appropriate substitutions.

(b) From the result of part (a) show that the radial electric �eld on the positive z axis is

Er(z) =
V a2

(z2 + a2)3/2

(
3 +

a2

z2

)
for z > a, and

Er(z) = −V
a

[
3 + (a/z)2

(1 + (z/a)2)3/2
− a2

z2

]
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for |z| < a. Show that the second form is well behaved at the origin, with the value, Er(a) = −3V/2a.
Show that at z = a (north pole inside) it has the value −(

√
2− 1)V/a. Show that the radial �eld at the

north pole outside has the value
√

2V/a.

(c) Make a sketch of the electric �eld lines, both inside and outside the conducting hemispheres, with directions
indicated. Make a plot of the radial electric �eld along the z axis from z = −2a to z = 2a.

Exercise 1.17 - Simpli�ed model of a battery (Jackson 3.15)

Consider the following `spherical cow' model of a battery connected to an external circuit. A sphere of radius a
and conductivity σ is embedded in a uniform medium of conductivity σ′. Inside the sphere there is a uniform
(chemical) force in the z direction acting on the charge carriers; its strength as an e�ective electric �eld entering
Ohm's law is F . In the steady state, electric �elds exist inside and outside the sphere and surface charge resides
on its surface.

(a) Find the electric �eld (in addition to F ) and current density everywhere in space. Determine the surface-
charge density and show that the electric dipole moment of the spheres is ρ = 4πε0σa

3F/(σ + 2σ′).

(b) Show that the total current �owing out through the upper hemisphere of the sphere is

I =
2σσ′

σ + 2σ′
· πa2F

Calculate the total power dissipated outside the sphere. Using the lumped circuit relations, P = I2Re =
IVe, �nd the e�ective external resistance Re and voltage Ve.

(c) Find the power dissipated within the spheres and deduce the e�ective internal resistance Ri and voltage
Vi.

(d) De�ne the total voltage through the relation Vt = (Re + Ri)I and show that Vt = 4aF/3, as well as
Ve + Vi = Vt. Show that IVt is the power supplied ny the `chemical' force.

Reference: W.M. Saslow, Am. J. Phys. 62, 495-501 (1994).
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