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1 Legendre polynomials

Legendre’s differential equation
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Normalisation of solutions:
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Rodrigues formula:
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Generating function of Legendre polynomials:
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Orthogonality relation:
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2 Associated Legendre functions

Differential equation:
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Associated Legendre functions:

Pr(r) = (1— 2229 pa)

dx™

for 0 < m. Extension to m < O:
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Fundamental properties:
L. P"=0(z) = Pi(x)

2. P"(z)=0,m>1l.



3. Orthogonality:
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4. Normalisation:
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3 Spherical harmonics

Definition:

Orthogonality relation:
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Addition theorem:
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where 7 is the angle between direction parameterised by polar angles 6, ¢ and ', ¢'.

4 Bessel functions

4.1 Bessel functions of the first kind

Bessel’s differential equations:

T@)+ 1) + (1 - _) J(@) = 0

Independent solutions for v ¢ N:
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and the series are absolute convergent for all z € C-.
If v =m € N, the two solutions above are related

Jom(2) = (=1)" Jm ()

and the second independent solution is given by the Neumann function:

N, (z) = Jy(x)cosmv — J_, ()

sin v



which has a finite limit for v integre. .J, and N, form a basis for all v.
Hankel functions
HY(z) = J,(z) £iN,(x)
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All functions Q = J, N, H® and H® satisfy
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Integral representation:
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For small x
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is the Euler-Mascheroni constant. Their large x asymptotic behaviour is

J(x) — 2 cos (x e z)

4.2 Bessel functions of the second kind

Their differential equation is
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which has solutions I, (z) where
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and the complex power is specified as:
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Relation to Hankel functions:

where

These functions satisfy
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Integral representation:
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and asymptotic behaviour:

K,(x) ~ \/ge_x (14+0(1/x))

4.3 Roots of the Bessel functions

The equation

has infinitely many solutions:



From the asmptotics of J, , the roots far from the origin satisfy:
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Approximate values for a few cases:

v\n 1 2 3 4 5 6
0 240483 5.52008 8.65373 11.7915 14.9309 18.0711
1 3.83171 7.01559 10.1735 13.3237 16.4706 19.6159
2 513562 8.41724 11.6198 14.796 17.9598 21.117
3 6.38016 9.76102 13.0152 16.2235 19.4094 22.5827

4.4 An important integral and orthogonality relation

If for a fixed a & satisfies
J,(a) =0

then
2
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and the orthogonality relation on the interval [0, a] is
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4.5 Hankel transformation

In the limit of a half-infinite line
a — 00

the orthogonality relation becomes:
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If f is a function satisfying

/ dpp? | £(p)] < oo

0
then it can be represented as:
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where F, (k) is the Hankel transform

Fy(k) = / " dopf(0) . (kp)

This is the analogue of the Fourier transform on the half line, and it is well-defined for any
fixed v > —1/2.



Some useful relations for Legendre and Bessel functions

. When computing the electric field near a sharp edge we used
.0
P,(cosB) ~ Jy ((2V + 1) sin 5)

which is true for 8 < 1 and large v, where P,(x) is the solution of Legendre’s equation
which is regular at x =1
P,(1)=1

The other important fact is if we define 14 as the smallest v for which
P,(cosfB) =0

then it has the asymptotic behaviour
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. In the derivation of Cherenkov’s radiation we used the identity

for small 7 — f.
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Electromagnetic field of an arbitrarily moving point charge

Etd) = —(1-50?)

H(t,©) = —Rx E(t7)



