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1 Legendre polynomials
Legendre’s differential equation

d

dx
(1− x2)

dP

dx
+ ν(ν + 1)P = 0 (1)

Normalisation of solutions:
Pl(1) = 1

Rodrigues formula:

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l

Generating function of Legendre polynomials:

1√
1− 2xt+ t2

=
∞∑
l=0

tlPl(x)

Orthogonality relation: ∫ 1

−1

dxPl′(x)Pl(x) =
2

2l + 1
δll′

2 Associated Legendre functions
Differential equation:

d

dx
(1− x2)

dP

dx
+

[
ν(ν + 1)− m2

1− x2

]
P = 0 (2)

Associated Legendre functions:

Pm
l (x) = (1− x2)m/2

dm

dxm
Pl(x)

for 0 ≤ m. Extension to m < 0:

P−ml (x) = (−1)m
(l −m)!

(l +m)!
Pm
l (x)

Fundamental properties:

1. Pm=0
l (x) = Pl(x)

2. Pm
l (x) = 0, m > l.
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3. Orthogonality: ∫ +1

−1

dxPm
l (x)Pm

l′ (x) = 0

for l 6= l′.

4. Normalisation: ∫ +1

−1

dxPm
l (x)Pm

l (x) =
2

2l + 1

(l +m)!

(l −m)!

3 Spherical harmonics
Definition:

Ylm(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ

Orthogonality relation: ∫
dΩYlm(θ, φ)∗Yl′m′(θ, φ) = δll′δmm′

Addition theorem:

Pl(cos γ) =
4π

2l + 1

l∑
m=−l

Y ∗lm(θ′, φ′)Ylm(θ, φ)

where γ is the angle between direction parameterised by polar angles θ, φ and θ′, φ′.

4 Bessel functions

4.1 Bessel functions of the first kind

Bessel’s differential equations:

J ′′(x) +
1

x
J ′(x) +

(
1− ν2

x2

)
J(x) = 0

Independent solutions for ν /∈ N:

Jν(x) =
(x

2

)ν ∞∑
k=0

(−1)k

k!Γ(k + ν + 1)

(x
2

)2k

J−ν(x) =
(x

2

)−ν ∞∑
k=0

(−1)k

k!Γ(k − ν + 1)

(x
2

)2k

(3)

and the series are absolute convergent for all x ∈ C-.
If ν = m ∈ N, the two solutions above are related

J−m(x) = (−1)mJm(x)

and the second independent solution is given by the Neumann function:

Nν(x) =
Jν(x) cosπν − J−ν(x)

sin πν
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which has a finite limit for ν integre. Jν and Nν form a basis for all ν.
Hankel functions

H(1,2)
ν (x) = Jν(x)± iNν(x)

All functions Ω = J,N,H(1) and H(2) satisfy

Ων−1(x) + Ων+1(x) =
2ν

x
Ων(x)

Ων−1(x)− Ων+1(x) = 2
dΩν(x)

dx

Integral representation:

Jν(x) =
1

√
πΓ
(
ν + 1

2

) (x
2

)ν ∫ +1

−1

(1− t2)ν−1/2eixtdt ν > −1/2

For small x

Jν(x) → 1

Γ(ν + 1)

(x
2

)ν
Nν(x) →

{
2
π

(
log x

2
+ γ
)

ν = 0

−Γ(ν)
π

(
2
x

)ν
ν 6= 0

where

γ = lim
n→∞

(
n∑
k=1

1

k
− log n

)
= 0.5772 . . .

is the Euler-Mascheroni constant. Their large x asymptotic behaviour is

Jν(x) →
√

2

πx
cos
(
x− νπ

2
− π

4

)
Nν(x) →

√
2

πx
sin
(
x− νπ

2
− π

4

)
4.2 Bessel functions of the second kind

Their differential equation is

Y ′′(x) +
1

x
Y ′(x)−

(
1 +

ν2

x2

)
Y (x) = 0

which has solutions I±ν(x) where

Iν(x) =
(x

2

)ν ∞∑
k=1

1

k!Γ(k + ν + 1)

(x
2

)2k

= i−νJν(ix)

and the complex power is specified as:

i−ν := e−i
π
2
ν

For ν = m ∈ Z one has Im ≡ I−m, and the other independent solution can be written as

Km(x) = lim
ν→m

Kν(x)

Kν(x) =
π

2

Iν(x)− I−ν(x)

sin νπ
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Relation to Hankel functions:
Kν(x) =

π

2
iν+1H(1)

ν (ix)

where
iν+1 := ei

π
2

(ν+1)

These functions satisfy

d

dx
(xνIν(x)) = xνIν−1(x)

d

dx

(
x−νIν(x)

)
= x−νIν+1(x)

ν

x
Iν(x) + I ′ν(x) = Iν−1(x)

−ν
x
Iν(x) + I ′ν(x) = Iν+1(x)

Iν−1(x)− Iν+1(x) =
2ν

x
Iν(x)

Iν−1(x) + Iν+1(x) = 2
dIν(x)

dx

and

d

dx
(xνKν(x)) = −xνKν−1(x)

d

dx

(
x−νKν(x)

)
= −x−νKν+1(x)

ν

x
Kν(x) +K ′ν(x) = −Kν−1(x)

−ν
x
Kν(x) +K ′ν(x) = −Kν+1(x)

Kν−1(x)−Kν+1(x) = −2ν

x
Kν(x)

Kν−1(x) +Kν+1(x) = −2
dKν(x)

dx

Integral representation:

Iν(x) = i−νJν(ix)

=
1

√
πΓ
(
ν + 1

2

) (x
2

)ν ∫ +1

−1

(1− t2)ν−1/2e−xtdt x > 0 , ν > −1/2

Kν(x) =

√
π

Γ
(
ν + 1

2

) (x
2

)ν ∫ ∞
1

(t2 − 1)ν−1/2e−xtdt x > 0 , ν > −1/2

and asymptotic behaviour:

Kν(x) ∼
√

π

2x
e−x (1 +O(1/x))

4.3 Roots of the Bessel functions

The equation
Jν(x) = 0

has infinitely many solutions:
xνn n = 1, 2, . . .
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From the asmptotics of Jν , the roots far from the origin satisfy:

xνn ∼ nπ +

(
ν − 1

2

)
π

2

Approximate values for a few cases:

ν\n 1 2 3 4 5 6
0 2.40483 5.52008 8.65373 11.7915 14.9309 18.0711
1 3.83171 7.01559 10.1735 13.3237 16.4706 19.6159
2 5.13562 8.41724 11.6198 14.796 17.9598 21.117
3 6.38016 9.76102 13.0152 16.2235 19.4094 22.5827

4.4 An important integral and orthogonality relation

If for a fixed a ξ satisfies
Jν(ξa) = 0

then ∫ a

0

x [Jν(ξx)]2 dx =
a2

2
[Jν+1(ξa)]2

and the orthogonality relation on the interval [0, a] is∫ a

0

dρρJν(xνnρ/a)Jν(xνn′ρ/a) =
a2

2
[Jν+1(xνn)]2 δnn′

4.5 Hankel transformation

In the limit of a half-infinite line
a→∞

the orthogonality relation becomes:∫ ∞
0

dρρJν(kρ)Jν(k
′ρ) =

1

k
δ(k − k′)

If f is a function satisfying ∫ ∞
0

dρρ1/2 |f(ρ)| <∞

then it can be represented as:

f(ρ) =

∫ ∞
0

dk kFν(k)Jν(kρ)

where Fν(k) is the Hankel transform

Fν(k) =

∫ ∞
0

dρ ρf(ρ)Jν(kρ)

This is the analogue of the Fourier transform on the half line, and it is well-defined for any
fixed ν > −1/2.
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5 Some useful relations for Legendre and Bessel functions
1. When computing the electric field near a sharp edge we used

Pν(cos θ) ∼ J0

(
(2ν + 1) sin

θ

2

)
which is true for θ < 1 and large ν, where Pν(x) is the solution of Legendre’s equation
which is regular at x = 1

Pν(1) = 1

The other important fact is if we define ν0 as the smallest ν for which

Pν(cos β) = 0

then it has the asymptotic behaviour

ν0 '
[
2 ln

(
2

π − β

)]−1

for small π − β.

2. In the derivation of Cherenkov’s radiation we used the identity∫ ∞
−∞

ds
eist√
s2 + 1

= 2K0(|t|)

6 Electromagnetic field of an arbitrarily moving point charge

~E(t, ~x) =
q

4πε0

(
1− ~β(t̄)2

) ~R−R~β(t̄)(
R− ~R · ~β(t̄)

)3 +
qµ0

4π

~R×
[(
~R−R~β(t̄)

)
× ~a(t̄)

]
(
R− ~R · ~β(t̄)

)3

~H(t, ~x) =
1

Z0

R̂× ~E(t, ~x)
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