Mathematical Supplement for Electrodynamics 2

Gábor Takács

26th January 2019

1 Legendre polynomials

Legendre's differential equation

$$
\begin{equation*}
\frac{d}{d x}\left(1-x^{2}\right) \frac{d P}{d x}+\nu(\nu+1) P=0 \tag{1}
\end{equation*}
$$

Normalisation of solutions:

$$
P_{l}(1)=1
$$

Rodrigues formula:

$$
P_{l}(x)=\frac{1}{2^{l} l!} \frac{d^{l}}{d x^{l}}\left(x^{2}-1\right)^{l}
$$

Generating function of Legendre polynomials:

$$
\frac{1}{\sqrt{1-2 x t+t^{2}}}=\sum_{l=0}^{\infty} t^{l} P_{l}(x)
$$

Orthogonality relation:

$$
\int_{-1}^{1} d x P_{l^{\prime}}(x) P_{l}(x)=\frac{2}{2 l+1} \delta_{l l^{\prime}}
$$

2 Associated Legendre functions

Differential equation:

$$
\begin{equation*}
\frac{d}{d x}\left(1-x^{2}\right) \frac{d P}{d x}+\left[\nu(\nu+1)-\frac{m^{2}}{1-x^{2}}\right] P=0 \tag{2}
\end{equation*}
$$

Associated Legendre functions:

$$
P_{l}^{m}(x)=\left(1-x^{2}\right)^{m / 2} \frac{d^{m}}{d x^{m}} P_{l}(x)
$$

for $0 \leq m$. Extension to $m<0$:

$$
P_{l}^{-m}(x)=(-1)^{m} \frac{(l-m)!}{(l+m)!} P_{l}^{m}(x)
$$

Fundamental properties:

1. $P_{l}^{m=0}(x)=P_{l}(x)$
2. $P_{l}^{m}(x)=0, m>l$.
3. Orthogonality:

$$
\int_{-1}^{+1} d x P_{l}^{m}(x) P_{l^{\prime}}^{m}(x)=0
$$

for $l \neq l^{\prime}$.
4. Normalisation:

$$
\int_{-1}^{+1} d x P_{l}^{m}(x) P_{l}^{m}(x)=\frac{2}{2 l+1} \frac{(l+m)!}{(l-m)!}
$$

3 Spherical harmonics

Definition:

$$
Y_{l m}(\theta, \phi)=\sqrt{\frac{2 l+1}{4 \pi} \frac{(l-m)!}{(l+m)!}} P_{l}^{m}(\cos \theta) e^{i m \phi}
$$

Orthogonality relation:

$$
\int d \Omega Y_{l m}(\theta, \phi)^{*} Y_{l^{\prime} m^{\prime}}(\theta, \phi)=\delta_{l l^{\prime}} \delta_{m m^{\prime}}
$$

Addition theorem:

$$
P_{l}(\cos \gamma)=\frac{4 \pi}{2 l+1} \sum_{m=-l}^{l} Y_{l m}^{*}\left(\theta^{\prime}, \phi^{\prime}\right) Y_{l m}(\theta, \phi)
$$

where γ is the angle between direction parameterised by polar angles θ, ϕ and $\theta^{\prime}, \phi^{\prime}$.

4 Bessel functions

4.1 Bessel functions of the first kind

Bessel's differential equations:

$$
J^{\prime \prime}(x)+\frac{1}{x} J^{\prime}(x)+\left(1-\frac{\nu^{2}}{x^{2}}\right) J(x)=0
$$

Independent solutions for $\nu \notin \mathbb{N}$:

$$
\begin{align*}
J_{\nu}(x) & =\left(\frac{x}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(k+\nu+1)}\left(\frac{x}{2}\right)^{2 k} \\
J_{-\nu}(x) & =\left(\frac{x}{2}\right)^{-\nu} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(k-\nu+1)}\left(\frac{x}{2}\right)^{2 k} \tag{3}
\end{align*}
$$

and the series are absolute convergent for all $x \in \mathbb{C}$-.
If $\nu=m \in \mathbb{N}$, the two solutions above are related

$$
J_{-m}(x)=(-1)^{m} J_{m}(x)
$$

and the second independent solution is given by the Neumann function:

$$
N_{\nu}(x)=\frac{J_{\nu}(x) \cos \pi \nu-J_{-\nu}(x)}{\sin \pi \nu}
$$

which has a finite limit for ν integre. J_{ν} and N_{ν} form a basis for all ν.
Hankel functions

$$
H_{\nu}^{(1,2)}(x)=J_{\nu}(x) \pm i N_{\nu}(x)
$$

All functions $\Omega=J, N, H^{(1)}$ and $H^{(2)}$ satisfy

$$
\begin{aligned}
& \Omega_{\nu-1}(x)+\Omega_{\nu+1}(x)=\frac{2 \nu}{x} \Omega_{\nu}(x) \\
& \Omega_{\nu-1}(x)-\Omega_{\nu+1}(x)=2 \frac{d \Omega_{\nu}(x)}{d x}
\end{aligned}
$$

Integral representation:

$$
J_{\nu}(x)=\frac{1}{\sqrt{\pi} \Gamma\left(\nu+\frac{1}{2}\right)}\left(\frac{x}{2}\right)^{\nu} \int_{-1}^{+1}\left(1-t^{2}\right)^{\nu-1 / 2} e^{i x t} d t \quad \nu>-1 / 2
$$

For small x

$$
\begin{aligned}
J_{\nu}(x) & \rightarrow \frac{1}{\Gamma(\nu+1)}\left(\frac{x}{2}\right)^{\nu} \\
N_{\nu}(x) & \rightarrow \begin{cases}\frac{2}{\pi}\left(\log \frac{x}{2}+\gamma\right) & \nu=0 \\
-\frac{\Gamma(\nu)}{\pi}\left(\frac{2}{x}\right)^{\nu} & \nu \neq 0\end{cases}
\end{aligned}
$$

where

$$
\gamma=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{1}{k}-\log n\right)=0.5772 \ldots
$$

is the Euler-Mascheroni constant. Their large x asymptotic behaviour is

$$
\begin{aligned}
& J_{\nu}(x) \rightarrow \sqrt{\frac{2}{\pi x}} \cos \left(x-\frac{\nu \pi}{2}-\frac{\pi}{4}\right) \\
& N_{\nu}(x) \rightarrow \sqrt{\frac{2}{\pi x}} \sin \left(x-\frac{\nu \pi}{2}-\frac{\pi}{4}\right)
\end{aligned}
$$

4.2 Bessel functions of the second kind

Their differential equation is

$$
Y^{\prime \prime}(x)+\frac{1}{x} Y^{\prime}(x)-\left(1+\frac{\nu^{2}}{x^{2}}\right) Y(x)=0
$$

which has solutions $I_{ \pm \nu}(x)$ where

$$
\begin{aligned}
I_{\nu}(x) & =\left(\frac{x}{2}\right)^{\nu} \sum_{k=1}^{\infty} \frac{1}{k!\Gamma(k+\nu+1)}\left(\frac{x}{2}\right)^{2 k} \\
& =i^{-\nu} J_{\nu}(i x)
\end{aligned}
$$

and the complex power is specified as:

$$
i^{-\nu}:=e^{-i \frac{\pi}{2} \nu}
$$

For $\nu=m \in \mathbb{Z}$ one has $I_{m} \equiv I_{-m}$, and the other independent solution can be written as

$$
\begin{aligned}
K_{m}(x) & =\lim _{\nu \rightarrow m} K_{\nu}(x) \\
K_{\nu}(x) & =\frac{\pi}{2} \frac{I_{\nu}(x)-I_{-\nu}(x)}{\sin \nu \pi}
\end{aligned}
$$

Relation to Hankel functions:

$$
K_{\nu}(x)=\frac{\pi}{2} i^{\nu+1} H_{\nu}^{(1)}(i x)
$$

where

$$
i^{\nu+1}:=e^{i \frac{\pi}{2}(\nu+1)}
$$

These functions satisfy

$$
\begin{aligned}
\frac{d}{d x}\left(x^{\nu} I_{\nu}(x)\right) & =x^{\nu} I_{\nu-1}(x) \\
\frac{d}{d x}\left(x^{-\nu} I_{\nu}(x)\right) & =x^{-\nu} I_{\nu+1}(x) \\
\frac{\nu}{x} I_{\nu}(x)+I_{\nu}^{\prime}(x) & =I_{\nu-1}(x) \\
-\frac{\nu}{x} I_{\nu}(x)+I_{\nu}^{\prime}(x) & =I_{\nu+1}(x) \\
I_{\nu-1}(x)-I_{\nu+1}(x) & =\frac{2 \nu}{x} I_{\nu}(x) \\
I_{\nu-1}(x)+I_{\nu+1}(x) & =2 \frac{d I_{\nu}(x)}{d x}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{d}{d x}\left(x^{\nu} K_{\nu}(x)\right) & =-x^{\nu} K_{\nu-1}(x) \\
\frac{d}{d x}\left(x^{-\nu} K_{\nu}(x)\right) & =-x^{-\nu} K_{\nu+1}(x) \\
\frac{\nu}{x} K_{\nu}(x)+K_{\nu}^{\prime}(x) & =-K_{\nu-1}(x) \\
-\frac{\nu}{x} K_{\nu}(x)+K_{\nu}^{\prime}(x) & =-K_{\nu+1}(x) \\
K_{\nu-1}(x)-K_{\nu+1}(x) & =-\frac{2 \nu}{x} K_{\nu}(x) \\
K_{\nu-1}(x)+K_{\nu+1}(x) & =-2 \frac{d K_{\nu}(x)}{d x}
\end{aligned}
$$

Integral representation:

$$
\begin{aligned}
I_{\nu}(x) & =i^{-\nu} J_{\nu}(i x) \\
& =\frac{1}{\sqrt{\pi} \Gamma\left(\nu+\frac{1}{2}\right)}\left(\frac{x}{2}\right)^{\nu} \int_{-1}^{+1}\left(1-t^{2}\right)^{\nu-1 / 2} e^{-x t} d t \quad x>0, \nu>-1 / 2 \\
K_{\nu}(x) & =\frac{\sqrt{\pi}}{\Gamma\left(\nu+\frac{1}{2}\right)}\left(\frac{x}{2}\right)^{\nu} \int_{1}^{\infty}\left(t^{2}-1\right)^{\nu-1 / 2} e^{-x t} d t \quad x>0, \nu>-1 / 2
\end{aligned}
$$

and asymptotic behaviour:

$$
K_{\nu}(x) \sim \sqrt{\frac{\pi}{2 x}} e^{-x}(1+O(1 / x))
$$

4.3 Roots of the Bessel functions

The equation

$$
J_{\nu}(x)=0
$$

has infinitely many solutions:

$$
x_{\nu n} \quad n=1,2, \ldots
$$

From the asmptotics of J_{ν}, the roots far from the origin satisfy:

$$
x_{\nu n} \sim n \pi+\left(\nu-\frac{1}{2}\right) \frac{\pi}{2}
$$

Approximate values for a few cases:

$\nu \backslash n$	1	2	3	4	5	6
0	2.40483	5.52008	8.65373	11.7915	14.9309	18.0711
1	3.83171	7.01559	10.1735	13.3237	16.4706	19.6159
2	5.13562	8.41724	11.6198	14.796	17.9598	21.117
3	6.38016	9.76102	13.0152	16.2235	19.4094	22.5827

4.4 An important integral and orthogonality relation

If for a fixed $a \xi$ satisfies

$$
J_{\nu}(\xi a)=0
$$

then

$$
\int_{0}^{a} x\left[J_{\nu}(\xi x)\right]^{2} d x=\frac{a^{2}}{2}\left[J_{\nu+1}(\xi a)\right]^{2}
$$

and the orthogonality relation on the interval $[0, a]$ is

$$
\int_{0}^{a} d \rho \rho J_{\nu}\left(x_{\nu n} \rho / a\right) J_{\nu}\left(x_{\nu n^{\prime}} \rho / a\right)=\frac{a^{2}}{2}\left[J_{\nu+1}\left(x_{\nu n}\right)\right]^{2} \delta_{n n^{\prime}}
$$

4.5 Hankel transformation

In the limit of a half-infinite line

$$
a \rightarrow \infty
$$

the orthogonality relation becomes:

$$
\int_{0}^{\infty} d \rho \rho J_{\nu}(k \rho) J_{\nu}\left(k^{\prime} \rho\right)=\frac{1}{k} \delta\left(k-k^{\prime}\right)
$$

If f is a function satisfying

$$
\int_{0}^{\infty} d \rho \rho^{1 / 2}|f(\rho)|<\infty
$$

then it can be represented as:

$$
f(\rho)=\int_{0}^{\infty} d k k F_{\nu}(k) J_{\nu}(k \rho)
$$

where $F_{\nu}(k)$ is the Hankel transform

$$
F_{\nu}(k)=\int_{0}^{\infty} d \rho \rho f(\rho) J_{\nu}(k \rho)
$$

This is the analogue of the Fourier transform on the half line, and it is well-defined for any fixed $\nu>-1 / 2$.

5 Some useful relations for Legendre and Bessel functions

1. When computing the electric field near a sharp edge we used

$$
P_{\nu}(\cos \theta) \sim J_{0}\left((2 \nu+1) \sin \frac{\theta}{2}\right)
$$

which is true for $\theta<1$ and large ν, where $P_{\nu}(x)$ is the solution of Legendre's equation which is regular at $x=1$

$$
P_{\nu}(1)=1
$$

The other important fact is if we define ν_{0} as the smallest ν for which

$$
P_{\nu}(\cos \beta)=0
$$

then it has the asymptotic behaviour

$$
\nu_{0} \simeq\left[2 \ln \left(\frac{2}{\pi-\beta}\right)\right]^{-1}
$$

for small $\pi-\beta$.
2. In the derivation of Cherenkov's radiation we used the identity

$$
\int_{-\infty}^{\infty} d s \frac{e^{i s t}}{\sqrt{s^{2}+1}}=2 K_{0}(|t|)
$$

6 Electromagnetic field of an arbitrarily moving point charge

$$
\begin{aligned}
\vec{E}(t, \vec{x}) & =\frac{q}{4 \pi \epsilon_{0}}\left(1-\vec{\beta}(\bar{t})^{2}\right) \frac{\vec{R}-R \vec{\beta}(\bar{t})}{(R-\vec{R} \cdot \vec{\beta}(\vec{t}))^{3}}+\frac{q \mu_{0}}{4 \pi} \frac{\vec{R} \times[(\vec{R}-R \vec{\beta}(\vec{t})) \times \vec{a}(\bar{t})]}{(R-\vec{R} \cdot \vec{\beta}(\vec{t}))^{3}} \\
\vec{H}(t, \vec{x}) & =\frac{1}{Z_{0}} \hat{R} \times \vec{E}(t, \vec{x})
\end{aligned}
$$

