
Classical electrodynamics 2 Class 8

Class 8 - Multipole radiation, scattering

Class material

Exercise 8.1 - Rotating charge systems (Jackson 9.1)
A common textbook example of a radiating system is a configuration of charges fixed relative to each other but
in rotation. the charge density is obviously a function of time, but it is not in the from of

ρ(x, t) = ρ(x) e−ıωt . (1)

(a) Show that for rotating charges one alternative is to calculate real time-dependent multipole moments
using ρ(x, t) directly and then compute the multipole moments for a given harmonic frequency with the
convention of (1) by inspection or Fourier decomposition of the time-dependent moments. Note that
care must be taken when calculating qlm(t) to form linear combinations that are real before making the
connection.

(b) Consider a charge density ρ(x, t) that is periodic in time with period T = 2π/ω0. By making a Fourier
series expansion, show that it can be written as

ρ(x, t) = ρ0(x) +

∞∑
n=1

Re
[
2ρn(x) e−ınω0t

]
where

ρn(x) =
1

T

∫ T

0

ρ(x, t) eınω0t dt

This shows explicitly how to establish connection with (1).

(c) For a single charge q rotating about the origin in the x − y plane in a circle of radius R at constant
angular speed ω0, calculate the l = 0 and l = 1 multipole moments by the methods of part (a) and (b)
and compare. In method (b) express the charge density ρn(x) in cylindrical coordinates. Are there higher
multipoles, for example, quadrupole? At what frequencies?

Exercise 8.2 - Radiation of two half-spheres with oscillating potential difference
(Jackson 9.3)
Two halves of a spherical metallic shell of radius R and infinite conductivity are separated by a very small
insulating gap. An alternating potential is applied between the two halves of the sphere so that the potentials
are ±V cosωt. In the long-wavelength approximation limit, find the radiation fields, the angular distribution of
radiated power, and the total radiated power from the sphere.

Exercise 8.3 - Scattering on a perfectly conducting sphere
Consider a small perfectly conducting sphere of radius a, and an unpolarized incident light wave of wave-length
much larger than a.

(a) Using the perfect conductor limits of the dielectric sphere in external homogeneous electric field, compute
the electric dipole polarisation of the sphere.

(b) Using the perfect conductor limits of the magnetic sphere in external homogeneous magnetic field, compute
the magnetic dipole polarisation of the sphere.

(c) Determine the differential cross section amd the polarisation of the outgoing wave.
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Exercise 8.4 - Radiation of a current loop (Jackson 9.14)
An antenna consists of a circular loop of wire of radius a located in the x− y plane with its center at the origin.
The current in the wire is

I = I0 cosωt = Re I0 e−ıωt

(a) Find the expression for E and H in the radiation zone without approximations as to the magnitude of ka.
Determine the power radiated per unit solid angle.

(b) What is the lowest nonvanishing multipole moment (Qlm or Mlm)? Evaluate this moment in the limit
ka� 1.

Homework

The following problems (marked with an asterisk) form the basis of the short
test at the beginning of the next class.

Exercise 8.5 - Scattering of polarized light on a perfect conducting sphere (Jackson
10.1)*
(a) Show that for arbitrary initial polarization, the scattering cross section of a perfectly conducting sphere

of radius a, summed over outgoing polarizations, is given in the long-wavelength limit by

dσ

dΩ
(e0,n0,n) = k4a6

[
5

4
− |e0 · n|2 −

1

4
|n · (n0 × e0)|2 − n0 · n

]
where n0 and n are the directions of the incident and scattered radiations, respectively, while e0 is the
(perhaps complex) unit polarization vector of the incident radiation (e∗0 · e0 = 1; n0 · e0 = 0 ).

(b) If the incident radiation is linearly polarized, show that the cross section is

dσ

dΩ
(e0,n0,n) = k4a6

[
5

8
(1 + cos2 θ)− cos θ − 3

8
sin2 θ cos 2φ

]
where n · n0 = cos θ and the azimuthal angle φ is measured from the direction of the linear polarization.

(c) What is the ratio of scattered intensities at θ = π/2, φ = 0 and θ = π/2, φ = π/2? Explain physically in
terms of the induced multipoles and their radiation patterns.

Exercise 8.6 - Radiation of a rotating quadrupole (Jackson 9.2)*
A radiating quadrupole consists of a square of side a with charges ±q at alternate corners. The square rotates
with angular velocity ω about an axis normal to the plane of the square and through its center. Calculate
the quadrupole moments, the radiation fields, the angular distribution of the radiation, and the total radiated
power, all in the long-wavelenth approximation. What is the frequency of the radiation?

Exercise 8.7 - Radiation of an imperfect sphere (Jackson 9.12)*
An almost spherical surface defined by

R(θ) = R0[1 + βP2(cos θ)]

has inside of it a uniform volume distribution of charge totaling Q (here P2 denotes the Legendre polynomial of
degree 2). The small parameter β varies harmonically in time at frequency ω. This correspondes to surface waves
on a sphere. Keeping only lowest order terms in β and making the long-wavelength approximation, calculate
the nonvanishing multipole moments, the angular distribution of radiation, and the total power radiated.

Hint: note that the leading multipole moment is the electric quadrupole, which is in fact the only nonvanishing
multipole moment. Using spherical multipoles greatly simplifies the calculation of the quadrupole tensor.
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These problems are for further practice and to have some fun!

Exercise 8.8 - Scattering by a slightly lossy dielectric sphere (Jackson 10.4)
An unpolarized wave of frequency ω = ck is scattered by slightly lossy uniform isotropic dielectric sphere of
radius R much smaller than a wavelength. The sphere is characterized by an ordinary real dielectric constant
εr, and a real conductivity σ. The parameters are such that the skin depth δ is very large compared to the
radius R.

(a) Calculate the differential and total scattering cross section.

(b) Show that the absorption cross section is

σabs = 12πR2 RZ0σ

(εr + 2)2 + (Z0σ/k)2

Exercise 8.9 - Radiation of line and sheet sources (Jackson 6.1)
In three dimensions the solution to the wave equation

∇2A− 1

c2
∂2A

∂t2
= −µ0Jt ,

where t notes the transverse current, for a point source in space and time (a light flash at t′ = 0,x′ = 0) is a
spherical shell distrubance of radius R = ct, namely the Green function G(+):

G(±)(x, t;x′, t′) =

δ

(
t′ −

[
t± |x− x′|

c

])
|x− x′|

.

It may be initially surprising that in one or two dimensions, the disturbance possesses a “wake”, even though
the source is a “point” in space and time. The solutions for fewer dimenssions than three can be found by
superposition in the superfluous dimension(s), to eliminate dependence on such variable(s). For example, a
flashing line source of uniform amplitude is equivalent to a point source in two dimensions.

(a) Starting from the retarded solution to the three-dimensional wave equation:

Ψ(x, t) =

∫
d3x

[f(x′, t′)]ret
|x− x′|

with the retarded time t′ = t− |x− x′| /c, show that the source f(x′, t′) = δ(x′)δ(y′)δ(t′), equivalent to a
t = 0 point source at the origin in two dimensions, produces a two-dimensional wave,

Ψ(x, y, t) =
2cΘ(ct− %)√
c2t2 − %2

,

where % = x2 + y2 and Θ(ξ) is the unit step function.

(b) Show that a “sheet” source, equivalent to a point pulsed source at the origin in one space dimension,
produces a one-dimensional wave proportional to

Ψ(x, t) = 2πcΘ(ct− |x|) .

Exercise 8.10 - Dipole and quadrupole radiation in real time (Jackson 9.7)
(a) By means of Fourier superposition of different frequencies or equivalent means, show for a real electric

dipole p(t) that the isntantaneous radiated power per unit solid angle at a distance r from the dipole in
a direction n is

dP (t)

dΩ
=

Z0

16π2c2

∣∣∣∣[n× d2p

dt′ 2
(t′)

]
× n

∣∣∣∣2
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where t′ = t−r/c is the retarded time. For a magnetic dipole m(t), substitute (1/c)m̈×n for (n× p̈)×n.

(b) Show similarly for a real quadrupole tensor Qαβ(t)given by

Qαβ =

∫
d3x(3xαxβ − r2δαβ)ρ(x)

with a real charge density ρ(x, t) that the instantaneous radiated power per unit solid angle is

dP (t)

dΩ
=

Z0

576π2c4

∣∣∣∣[n× d3Q

dt′ 3
(n, t′)

]
× n

∣∣∣∣2
where Qα(n, t′) =

∑
β Qαβ .

Exercise 8.11 - Corrections to dipole approximation (Jackson 10.5)
The scattering by the dielectric sphere Exercise 8.8 was trated as purely electric dipole scattering. This is
adequate unless it happens that the real dielectric constant ε/ε0 is very large. In these circumstances a magnetic
dipole contribution, even though higher order in kR, may be important.

(a) Show that the changing magnetic flux of the incident wave induces an azimuthal current flow in the sphere
and produces a magnetic dipole moment

m =
ı4πσZ0

kµ0
(kR)2

R3

30
Binc

(b) Show that application of the optical theorem to the coherent sum of the electric and magnetic dipole
contribution leads to a total cross section

σt = 12πR2(RZ0σ)

[
1

(εr + 2)2 + (Z0σ/k)2
+

1

90
(kR)2

]
(Compare: Landau Lifshitz, Electrodynamics of Continuous Media, p.323)
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