
Classical electrodynamics 2 Class 3

Class 3 - Laplace equation in cylindrical coordinates. Magnetic scalar

potential. Magnetic monopole

Class material

Exercise 3.1 - Cylinder with a point charge inside

Given a grounded metal cylinder with h height and R radius. We put a point charge q into the middle of the
cylinder. What is the potentil inside the cylinder?

(a) Look for the solution for the potential separately below and above the charge! Write the corresponding
boundary conditaions for these potentials!

(b) Give the general solution in cylindrical coordinates!

(c) Determine the expansion coe�cients from the boundary conditions!

Exercise 3.2 - Finite cylinder with potential on the shield

Given a closed cylinder along the z axis with height h and radius R. The base of the cylinder is at the z = 0
plane. We ground the base and the top of the cylinder, on the walls the potential given by a V (φ, z) function.

(a) Write the separated form of the Laplace equation and show that it leads to the di�erential equation of
the modi�ed Bessel functions!

(b) Give the separated general solution of the equation!

(c) Determine the Φ(~r) electrostatic potential funtion from the boundary conditions!

(d) Determine the Φ(~r) electrostatic potential if

V (φ, z) = V0 sin

(
2π

h
z

)
cos

(
φ

2

)

(e) Calculate the ~E(z) electric �eld along the z axis!

Exercise 3.3 - Screening of the magnetic �eld

x

y

Rin

Rout

~B

µ

Figure 1

From a sphere with radius Rout and permeability µ we cut of a sphere with
radius Rin with the same centre. Outside the sphere we have a homogenous
magnetic induction with B magnitude. Calculate the magnetic induction
inside the inner sphere! (Screening of the magnetic �eld.)

(a) Write the equations and the boundary conditions for the magnetic
potential in the three di�erent segments!

(b) Give the general solution in spherical coordinates!

(c) Determine the expansion coe�cients from the boundary conditions!
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Exercise 3.4 - Semi-in�nite solenoid as a magnetic monopole

Consider a semi-in�nite solenoid with radius R and srcew density n. In the solenoid we �ow I current. Determine
the magnetic induction far from the end of the solenoid! Interpret the result as a `magnetic monopole' and
derive the di�erential equation for it! Show the electric-magnetic symmetry of the Maxwell equations with the
magnetic monopole!

(a) Unfold the solenoid to separate rings and give the B(z) magnetic induction of a ring along the axis of the
ring for large distances (magnetic dipole)!

(b) Introduce the magnetic scalar potential for the description of the large distance behavior!

(c) Sum up the contributions from the elementary rings to the magnetic potential Φm(z), calculate the
potential in the whole space by �tting the complete set:

Φ(~r) =

∞∑
`=0

[
A`r

` +B`r
−`−1]P`(cos θ)

(d) Calculate the magnetic induction and show that it has a source!

(e) How it modify the Maxwell equations?

(f) Investigate the symmetry between the electric and magnetic sectors of the Maxwell equations!
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Homework

The following problems (marked with an asterisk) form the basis of the short
test at the beginning of the next class.

Exercise 3.5 - Surface charge density on azimutal symmetric sphere*

Given a sphere shell with radii a. On this surface the electrostatic potential has cylindrical symmetry: V (θ) =
V0 cos(3θ).

(a) Write the general form of the Φin(~r) potential inside the sphere!

(b) Write the general form of the Φout(~r) potential outside the sphere!

(c) Determine the Φin(~r) and Φout(~r) potentials from the boundary conditions!

(d) Give the surface charge density on the surface of the sphere!

Exercise 3.6 - Coaxial cylinders*

Given two coaxial in�nite cylinder along the z axis with radii R1 and R2. The potential on the inner one is
V1(φ) and on the outer one is V2(φ).

(a) Give the Φ(r, φ) electrostatic potential inside the inner cylinder!

(b) Give the Φ(r, φ) electrostatic potential outside the cylinders!

(c) Give the Φ(r, φ) electrostatic potential between the cylinders!

(d) Give the surface charge density on the the inner cylinder!

(e) Answer the previous questions if:

V1(φ) = V0 cosφ

V2(φ) = 2V0 cos2 φ

Exercise 3.7 - Square tube around a point charge*

Given a square metal tube along the z axis with side length a. There is a point charge q in the origin of the
coordinate system.

(a) Give the Φ(~r) potential inside the tube!

(b) Give the behaviour of the Φ(~r) potential far from the point charge!

(c) Give the ~E(z) electric �eld along the z axis!

(d) Draw the electric �eld lines describing the �eld!

Hint:

δ(x)δ(y) =

(
2

a

)2 ∞∑
n,m=0

cos

(
(2n+ 1)πx

a

)
cos

(
(2m+ 1)πy

a

)
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These problems are for further practice and to have some fun!

Exercise 3.8 - Dirac monopole

At the origin there is a magnetic monopole with qm charge and at z = a there is an electric pointcharge qe. The
magnetic �eld of the monopole is:

~B =
µ0

4π

qm
r2
~er .

(a) Give the ~S(~r) Poynting vector in the whole space!

(b) Give the momentum density of the electromagnetic �eld!

(c) Give the angular momentum density of the electromagnetic �eld!

(d) Give the total angular momentum of the electromagnetic �eld!

(e) Show that, if the angular momentum is quantised (multiples of ~), then qe and qm are also quantised!

Some remarks:
This model of the magnetic monopole was invented by Paul A. M. Dirac(Nobel prize in 1933) in 19311, when he
was 29 years old. The relevance of this model is that, it gives a hypotetic description of the charge quantisation.

Exercise 3.9 - Multipole (Jackson 6.5)

A localized electric charge distribution produces an electric �eld E = −∇Φ. Into this �eld is placed a small
localized time-independent current density J(x), which generates a magnetic �eld H.

(a) Show that the momentum of these electromagnetic �elds,

P�ed = ε0

∫
V

d3xE×B = ε0µ0

∫
V

d3xE×H

can be transformed to

P�ed =
1

c2

∫
V

d3xΦJ

provided the product ΦH falls o� rapidly enough at large distances. How rapidly is `rapidly enough'?

(b) Assuming that the current distribution is localized to a region small compared to the scale of variation of
the electric �eld, expand the electrostatic potential in a Taylor series and show that

P�ed =
1

c2
E(0)×m

where E(0) is the electric �eld at the current distribution and m is the magnetic moment,

m =
1

2

∫
d3x′x′ × J(x′)

caused by the current.

(c) Suppose the current distribution is placed instead in a uniform electric �eld E0 (�lling all space). Show
that, no matter how complicated is the localized J, the result in part (a) is argumented by a surface
integral contribution from in�nity equal to minus one-third of the result of part (b), yielding

P�ed =
2

3c2
E0 ×m

Compare this result with that obtained by working directly with the original form of the momentum from
part (a) and the considerations at the end Jackson Sec.5.6.

1Dirac, P. A. M. (1931). Quantised singularities in the electromagnetic �eld. Proc. R. Soc. Lond. A, 133(821), 60-72.
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Exercise 3.10 - Rectangular capacitor (Jackson 6.13)

A parallel plate capacitor is formed of two �at rectangular perfectly conducting sheets of dimension a and b
separated by a distance d small compared to a or b. Current is fed in and taken out uniformly along the adjacent
edges of length b. With the input current and voltage de�ned at this end of the capacitor, calculate the input
impedance or admittance using the �eld concepts

R =
1

|Ii|2

{
Re

∫
V

d3x J∗ ·E
∮
S−Si

dA S · n + 4ω Im

∫
V

d3x (wm − we)
}

X =
1

|Ii|2

{
4ωRe

∫
V

d3x (wm − we)− Im

∫
V

d3x J∗ ·E
}

where we(wm) is the electric(magnetic) energy density de�ned as:

we =
1

4
ED∗ wm =

1

4
BH∗

and Z = R+ ıX.

(a) Calculate the electric and magnetic �elds in the capacitor correct to second order in powers of the frequency,
but neglecting fringing �elds.

(b) Show that the expansion of the reactance in powers of the frequency to an appropriate order is the same
as that obtained for a lumped circuit consisting of a capacitance C = ε0ab/d in series with an inductance
L = µ0ad/3b

Exercise 3.11 - Circular capacitor (Jackson 6.14)

An ideal circular parallel plate capacitor of radius a and plate separation d� a is connected to a current source
by axial leads, as shown in the sketch. The current in the wire is I(t) = I0 cosωt.

(a) Calculate the electric and magnetic �elds between the plates to second order in powers of the frequency
(or wave number), neglecting the e�ect of fringing �eld.

(b) Calculate the volume integrals of we and wm that enter the feinition of the reactance X to second order
in ω. Show that in terms of the input current Ii, de�ned by Ii = −ıωQ, where Q is the total charge on
one plate, these energies are∫

d3xwe =
1

4πε0

|Ii|2 d
ω2a2

,

∫
d3xwm =

µ0

4π

|Ii|2 d
8

(
1 +

ω2a2

12c2

)

(c) Show that the equivalent series circuit has C ' πε0a
2/d, L ' µ0d/8π, and that an estimate for the

resonant frequency of the system is ωtextres = 2
√

2c/a. Compare with the �rst root of the J0(x) Bessel
function.

Exercise 3.12 - Magnetic monopole (Jackson 6.16)

(a) Calculate the force in newtons acting on a Dirac monopole of the minimum magnetic charge located a
distance 0.5 Åfrom and in the median plane of a magnetic dipole with dipole moment equal to one nuclear
magneton (e~/2mp).

(b) Compare the force in part (a) with atomic forces such as the direct electrostatic force between charges (at
the same separation), the spin-orbit force, the hyper�ne interaction. Comment on the question of binding
of magnetic monopoles to nucleio with magnetic moments. Assum that the monopole mass is at least that
of a proton.

Reference: D.Sivers, Phys. Rev. D2, 2048 (1970).
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Exercise 3.13 - Magnetic monopole (Jackson 6.17)

(a) For a particle possessing both electric and magnetic charges, show that the generalization of the Lorentz
force in vacuum is

F = qeE + qmB/µ0 + qev ×B− qmv × ε0E

(b) Show that this expression for the force is invariant under a duality transformation of both �elds (E, Z0H)
, (Z0D,B) and charges (Z0ρe, ρm), (Z0Je,Jm), where Z0 =

√
µ0/ε0 is the vacuum impedance.

(c) Show that the Dirac quantization condition

eg

4π~
=
n

2
n ∈ Z

where e and g are the electric and magnetic charges, is generalized for two particles possessing electric
and magnetic charges e1, g1 and e2, g2, respectively, to

e1g2 − e2g1
4π~

=
n

2
n ∈ Z

and that the relation is invariant under a duality transformation of the charges.

Exercise 3.14 - Magnetic monopole (Jackson 6.18)

Consider the Dirac expression

A(x) =
g

4π

∫
L

dl′ × (x− x′)

|x− x′)|3

for the vector potential of a magnetic monopole and its associated string L. Suppose for de�niteness that the
monopole is located at the origin and the string along the negative z axis.

(a) Calculate A explicitly and show that in spherical coordinates it has components

Ar = 0 , Aθ = 0 , Aφ =
g(1− cos θ)

4πr sin θ
=
( g

4πr

)
tan

(
θ

2

)
(b) Varify that B = ∇×A is the Coulomb-like �eld of a point charge, except perhaps at θ = π.

(c) With the B determined in part (b), evaluate the total magnetic �ux passing through the circular loop
of radius R sin θ shown in the �gure. Consider θ < π/2 and θ > π/2 separately, bit always calculate the
upward �ux.

(d) From
∮
A · dl around the loop, determine the total magnetic �uc through the loop. Compare the result

with that found in part (c). Show that they are equal for 0 < θ < π/2, but we have a constant di�erence
for π/2 < θ < π. Interpret this di�erence.
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