
Practical Course in Mechanics 2 Lecture 12 (2019.05.07.)

Problem 1

Consider a two-dimensional anisotropic oscillator. The Hamiltonian of the system is
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(a) Write down the full (time dependent) Hamilton-Jacobi equation for the system.

(b) The Hamiltonian does not depend on time, therefore the Hamilton-Jacobi equation can be separated
in the form S(x, y, t) = S0(x, y, E) − Et. Write down the abbreviated Hamilton-Jacobi equation
for S0.

(c) Separate further the function S0, i.e. look for the solution in the form

S0(x, y, E) = Sx(x, αx) + Sy(y, αy) (2)

Write down the equations for Sx and Sy. Denote the new constants by αx,y.

(d) Determine the functions Sx, Sy, and express the full solution S(x, y, αx, αy, t) of the Hamilton-
Jacobi equation.

(e) The particle is initially (t = 0) at the position x = x0 and y = y0, and has zero momentum.
Determine the values of the constants.

(f) How can one get the x(t), y(t) solutions of the equations of motion, using S(x, y, t)? (Don’t
calculate it! It’s a lengthy calculation.)

Problem 2

Two identical particles of mass m are connected by a spring whose spring-constant is D. The particles
can move along the x axis. The Hamiltonian of the system is

H(x1, p1, x2, p2) =
p21 + p22
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(a) Write down the full (time dependent) Hamilton-Jacobi equation for the system.

(b) The Hamiltonian does not depend on time, therefore the Hamilton-Jacobi equation can be separated
int the form S = S0 − Et. Write down the abbreviated Hamilton-Jacobi equation for S0.

(c) Further separation cannot be done using the coordinates x1 ,x2. Transform the equation to the new
variables X = (x1 + x2)/2 and y = x1 − x2 and rewrite the equation of b.) using these variables.

(d) Separate the S0 function as S0(x1, x2, E) = Sy(y, αy) + SX(X,αX). Write down the equations for
SX and Sy! Denote the new constants by αy, αX .

(e) Determine the functions SX and Sy.

(f) Knowing the initial conditions (x1,0, x2,0, p1,0, p2,0) determine the values of the αX,y parameters.

Problem 3

Two identical bodies can move along the x axis in a box. The two bodies are attached to the walls
through two springs with spring constant D, and there is also a spring between the two bodies. The
Hamiltonian of the system is

H(x1, p1, x2, p2) =
p21 + p22
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(a) Write down the abbreviated Hamilton-Jacobi equation for the system.
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(b) The equation is not separable immediately, using the variables x1 and x2. Transform to the new
variables X = (x1 +x2)/2 and y = x1−x2. Show that the equation is now separable. Perform the
separation.

(c) Solve the H.J. equation using the separation.

(d) Determine the oscillation frequencies in the system. Is the motion of the system periodic for any
initial conditions?

Problem 4

Consider the following generalized oscillator, that is described by a power-law potential with exponent
α > 0:

H(p, x) =
p2

2m
+ k|x|α (5)

(a) Draw the contour lines H(p, x) = E on the p− x plane.

(b) Determine the integral that equals the phase-surface bounded by the contour-lines. Denote it by
2πI.

(c) In the generic case the integral cannot be analytically determined. The best we can do is to
determine the (power-law) dependence on the parameters E, m, and k. Performing appropriate
variable transformations make the integral dimensionless, i.e. collect all the dependence on the
parameters outside the integral. In this case the value of the dimensionless integral is only a
number, that can be calculated numerically.

(d) Using the derivation of I(E) determine the period of the oscillation as a function of the parameters.

Problem 5

The “adiabatic inveriance” of the action variable is an interesting theorem of Hamiltonian mechanics.
The theorem, whose proof can be found in [1,2]), states that in a system with one degree of freedom the
value of the action variables remains constant, even if we slowly change the parameters of the system,
i.e. the Hamiltonian is (slightly) time-dependent. The understanding of the theorem is easier, if we
introduce a time-dependent parameter in the Hamiltonian, i.e.

H = H(x, p, λ(t)) (6)

The action variable at a given value of λ can be determined uby calculating the phase-surface bounded
by the equienergetic contour:

2πI =

∮
p(E, q, λ)dq (7)

The theorem states, that if λ varies slowly and smoothly, then the value of I remains constant.
Consider a pendulum, where we slowly shrink the length of the pendulum. The Hamiltonian of the

system for small amplitudes is

H =
p2ϕ
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(a) For a given length l determine the action variable I(l, E).

(b) We start from a small initial (angular) amplitude A, when the length of the pendulum is l0. Then
we slowly shrink the length of the pendulum to l0/2. What is the final angular amplitude of the
pendulum?
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