NAME, GROUP:

DATE:
working with:

OPTICS 2

1. Determining the wavelength of a laser diode using a metal ruler as a reflective diffraction grating

Distance between the screen and the laser spot on the metal ruler $L=$ \qquad

2. Determining the grating constant of a transmission grating

Distance between the screen and transmission grating $\mathrm{L}=$ \qquad

3. Determining the width of a hair by diffraction

Distance between the screen and transmission grating $\mathrm{L}=$ \qquad
4. Michelson interferometer

Determining the temperature coefficient of a heated ceramic tube

Resistance of the Pt resistance thermometer

before heating: $R_{1}=$ \qquad
after heating: $R_{2}=$ \qquad
$\Delta R=R_{2}-R_{1}=$ \qquad
Temperature difference:
$\Delta T=\Delta R /\left(R_{0} \cdot \alpha_{\text {Pt }}\right)=\Delta R / 3.92=$ \qquad

Length of the ceramic tube $\ell_{0}=$ \qquad
Number of the cycles while heating $N=$ \qquad
Elongation of the ceramic tube

$$
\begin{array}{r}
\Delta \ell=(N / 2) \cdot \lambda=\ldots \ldots \\
\lambda=650 \mathrm{~nm}
\end{array}
$$

\qquad

Temperature coefficient

$$
\Delta l=e_{0} \alpha \Delta T \quad \rightarrow \quad \alpha=
$$

