NAME, GROUP:	
DATE:	
working with:	
OPTICS 2	
1. Determining the wavelength of a laser diode using a metal ruler as a reflective diffraction grating	
Distance between the screen and the laser spot on the metal ruler L =	
2. Determining the grating constant of a transmission grating	
Distance between the screen and transmission grating L =	
3. Determining the width of a hair by diffraction	
Distance between the screen and transmission grating L =	
4. Michelson interferometer Determining the temperature coefficient of a heated ceramic tube	
Resistance of the Pt resistance thermometer	
before heating: $R_1 = \dots$	
after heating: $R_2 = \dots$	
$\Delta R = R_2 - R_1 = \dots$	
Temperature difference:	
$\Delta T = \Delta R / (R_0 \cdot \alpha_{Pt}) = \Delta R / 3.92 = \dots$	
Length of the ceramic tube $\ell_0 = \dots$	
Number of the cycles while heating N =	
Elongation of the ceramic tube	
$\Delta \ell = (N/2) \cdot \lambda = \dots$	
λ = 650 nm	
Temperature coefficient	
$\Delta \ell = \ell_0 \alpha \Delta T \rightarrow \alpha = \dots$	