

Laser Physics 14. Coherent optical amplifier (cont.)

Pál Maák

Atomic Physics Department

1

Gain, bandwidth, phase shift, power source, nonlinearity and noise

The monochromatic optical plane wave traveling in z direction in the laser material with frequency v can be characterized:

$$\operatorname{Re}\left\{E(z)e^{j2\pi vt}\right\}, \quad I(z) = \frac{E^2(z)}{2\eta}, \quad \Phi(z) = \frac{I(z)}{hv}$$

 η ls the vacuum impedance.

Amplifier

Amplifier nonlinearity or gain saturation

Rev.::
$$\gamma(v) = N\sigma(v) = N\frac{\lambda^2}{8\pi t_{sp}}g(v), N = \frac{N_0}{1+W_i\tau_s}, \tau_s = \tau_2 + \tau_1\left(1-\frac{\tau_2}{\tau_{21}}\right).$$

gain coefficient Φ -dependence $W_i = \Phi\sigma(v).$
 $N = \frac{N_0}{1+\Phi/\Phi_s(v)}, \frac{1}{\Phi_s(v)} = \tau_s\sigma(v) = \frac{\lambda^2}{8\pi}\frac{\tau_s}{t_{sp}}g(v), \Phi_s \text{ saturation photon-flux density.}$
 $\gamma(v) = \frac{\gamma_0(v)}{1+\Phi/\Phi_s(v)}, \qquad \gamma_0(v) = N_0\frac{\lambda^2}{8\pi t_{sp}}g(v).$
small signal gain $v_i = \frac{\lambda^2}{1+\Phi/\Phi_s(v)} + \frac{\lambda^2}{1+\Phi/\Phi_$

3

<u>Amplifier nonlinearity or gain saturation</u> – frequency dependence

Depends on the broadening behavior of the medium, different for homogeneous and inhomogeneous media.

Homogeneously broadened medium

Amplifier nonlinearity or gain saturation Homogeneously broadened medium (cont.) Gain of a homogeneous medium of length ℓ ? $G = \frac{\Phi(\ell)}{\Phi(0)} = ?$ $\Phi(z)$ is the photon-flux density at z $\frac{d\Phi}{dz} = NW_i = \underbrace{N\sigma}_{\gamma} \Phi,$ Ζ $\frac{d\Phi}{dz} = \frac{\gamma_0 \Phi}{1 + \frac{\Phi}{1 + \frac{\Phi$ $\begin{pmatrix} \frac{1}{\Phi} + \frac{1}{\Phi_s} \\ \frac{1}{\Phi} + \frac{1}{\Phi_s} \end{pmatrix} d\Phi = \gamma_0 dz \qquad \stackrel{\ell}{\longrightarrow} \qquad ln \left[\frac{\Phi(\ell)}{\Phi(0)} \frac{\Phi_s}{\Phi_s} \right] + \frac{\Phi(\ell) - \Phi(0)}{\Phi_s} = \gamma_0 \ell$ $[In(Y)+Y=[In(X)+X]+\gamma_0\ell, \quad X=\Phi(0)/\Phi_s, \quad Y=\Phi(\ell)/\Phi_s.] \quad G=\frac{\Phi(\ell)}{\Phi(0)}=\frac{Y}{X}=?$

There are analytic solutions only in two limiting cases!

Laser Physics 14

5

Amplifier nonlinearity or gain saturation

Homogeneously broadened medium (cont.)

1. X and Y << 1, the photon-flux densities are much smaller than the saturation photon-flux density

$$In(Y) \approx In(X) + \gamma_0 \ell, \quad \rightarrow \quad In\left(\frac{Y}{X}\right) = \gamma_0 \ell, \quad \rightarrow \quad Y \approx X \exp(\gamma_0 \ell), \quad \rightarrow \quad G = \exp(\gamma_0 \ell).$$

X and Y are negligible in comparison with *In X* and *In Y*. There is linear dependence between the input and output signals for a given length of the medium, the gain depends on γ_0 , this is the origin of the name **small signal gain**!

Amplifier nonlinearity or gain saturation

Homogeneously broadened medium (cont.)

2. X és Y >> 1, the photon-flux densities are much higher than the saturation photon-flux density

$$Y \approx X + \gamma_0 \ell$$
, $\Phi(\ell) \approx \Phi(0) + \gamma_0 \Phi_s \ell \approx \Phi(0) + \frac{N_0 \ell}{\tau_s}$

$$G = \frac{Y}{X} \cong 1 + \gamma_0 \ell \frac{1}{X} = 1 + \gamma_0 \ell \frac{\Phi_s}{\Phi(0)} \approx 1.$$

In X and In Y can be neglected in comparison with X and Y. Under such heavily saturated conditions there is only a constant grow in the output that is independent from the input photon-flux density. The medium becomes almost transparent!

Amplifier nonlinearity or gain saturation

Homogeneously broadened medium (cont.)

For intermediate values of X and Y there are numerical solutions:

Amplifier nonlinearity or gain saturation

Homogeneous saturable absorber

The gain coefficient is negative when the population is normal than inverted (in thermal equilibrium), that is $N_0 < 0$, the medium provides attenuation than amplification. The attenuation coefficient $\alpha(v) = -\gamma(v)$ also suffers from saturation with growing photon-flux density.

Application: passive Q-switching!

Lineshape function of a homogeneous group of β (e.g. particle moving with the same velocity in the direction of the photon beam)

10

$$\Rightarrow g_{\beta}(v) = \frac{\overline{2\pi}}{\left(v - v_{\beta} - v_{0}\right)^{2} + \left(\frac{\Delta v}{2}\right)^{2}}$$

Coherent optical amplifier

Amplifier nonlinearity or gain saturation

Inhomogeneous saturable amplifier (cont.)

$$\gamma_{\beta}(v) = N_0 S \frac{\frac{\Delta v}{2\pi}}{\left(v - v_{\beta} - v_0\right)^2 + \left(\frac{\Delta v_s}{2}\right)^2}, \quad \Delta v_s = \Delta v \left(1 + \frac{\Phi}{\Phi_s(v_0)}\right)^{1/2},$$
$$\frac{1}{\Phi_s(v_0)} = \frac{\lambda^2}{8\pi} \frac{\tau_s}{t_{sp}} \frac{2}{\pi \Delta v} = \frac{\lambda^2}{8\pi} \frac{\tau_s}{t_{sp}} g(v_0).$$

The β -group has a fraction according to the Maxwell-Boltzmann distribution:

$$p(v_{\beta}) = \frac{1}{\sigma_{D}(2\pi)^{1/2}} e^{-\frac{v_{\beta}^{2}}{2\sigma_{D}^{2}}}, \quad \Delta v_{D} = 2\sigma_{D}(\ln 2)^{1/2}, \quad \frac{1}{\sigma_{D}} = \left(\frac{M}{kT}\right)^{1/2} \frac{c}{v_{0}}$$

Calculation of the saturated gain: $\left| \overline{\gamma}(v) = \int_{-\infty}^{\infty} \gamma_{\beta}(v) p(v_{\beta}) dv_{\beta} \right|$

Laser Physics 14

11

Amplifier nonlinearity or gain saturation

Inhomogeneous saturable amplifier (cont.) $_{\vec{r}(\nu_0)}$

$$\frac{\overline{\gamma}(v_0)}{\overline{\gamma}_0} = \frac{1}{2}, \quad 4 = \left[1 + \frac{\Phi}{\Phi_s}\right]$$

$$\Phi = \mathbf{3}\Phi_{s} \quad v = v_{0}$$

Local saturation by a large flux density photon beam of frequency v_1 "spectral hole burning" The width and depth of the hole increases with the flux density.

Laser Physics 14

13

Amplifier noise

The amplified spontaneous emission (ASE) noise is broadband, multidirectional, and unpolarized. The probability density (per second) of spontaneous emission in the range [v, v + dv] and in unit volume dV:

$$P_{sp}(v)dv = \frac{1}{t_{sp}}g(v)dv, \qquad P_{sp} = \frac{1}{t_{sp}}\int_{0}^{\infty}g(v)dv$$

if N_2 is the atomic density in level 2, the average spontaneously emitted power per unit volume per unit frequency is: $hv N_2 P_{sp}(v)$. The number of emitted photons in unit length of the unit volume within bandwidth *B* around *v* in solid angle $d\Omega$ with a given polarization:

Passive optical resonators

<u>Passive optical resonator</u> – no active medium is present.

Characteristics of passive optical resonators

- They are open, feedback only from a narrow solid angle (no side walls and small size mirrors in the longitudinal direction),
- Dimensions >> λ_{laser} , suitable length of the active medium depends on the gain.

Solving Maxwell-equations for the geometry of the optical cavity (solving wave-equation with boundary conditions: the field amplitude is taken to be "0") \rightarrow discrete frequency modes of the electromagnetic fields can be determined. Because of the open resonator instead of $\underline{E}(\underline{r},t) = E_0 \underline{U}(\underline{r}) \exp(j2\pi v t)$ the usual stationary solutions

$$\underline{E}(\underline{r},t) = E_0 \underline{U}(\underline{r}) \exp\{(-t/2\tau_r) + j2\pi vt\}$$

modes with exponentially decaying amplitude, τ_r is the resonator or photon lifetime.

One dimensional plane parallel resonator – estimation of the photon lifetime

L is the resonator length, R_1 and R_2 are reflectivity (intensity) of the mirrors, α_r is the loss coefficient in the resonator (unit length), α_s is the scattering coefficient between the mirrors. For one round-trip the intensity changes:

$$\mathbf{e}^{-2\alpha_r L} = \mathbf{R}_1 \mathbf{R}_2 \mathbf{e}^{-2\alpha_s L}, \quad \frac{1}{\alpha_r \mathbf{c}} = \tau_r, \quad \boxed{\Delta v_r = \frac{1}{2\pi \tau_r}}, \quad \alpha_r = \frac{2\pi}{\mathbf{c}} \Delta v_r.$$

While $\alpha_s <<1$

resonator or photon lifetime

$$e^{-2\alpha_r L} = R_1 R_2, \quad -2\alpha_r L = \ln R_1 R_2, \quad \alpha_r = \frac{-\ln R_1 R_2}{2L}$$

E.g., if $R = R_1 = R_2 = 0.98$ and L = 0.5 m

$$\tau_r = \frac{1}{\alpha_r c} = \frac{2L}{-c \ln R_1 R_2} = \frac{2L}{c} \frac{1}{-\ln R_1 R_2} = \frac{t_r}{-\ln R_1 R_2}$$
$$t_r = 3.33 \text{ ns}, \quad \tau_r = 82.5 \text{ ns} \quad \text{és} \quad \Delta v_r \approx 2 \text{ MHz.}$$
$$\tau_r = 0.000 \text{ round-trip time} \qquad \sim 25 t_r$$

One dimensional plane parallel resonator – modes From the standing waves condition:

 $L = n \frac{\lambda}{2}$, *n* pozitive integer, $v_n = \frac{c}{\lambda} = n \frac{c}{2L}$.

Equidistant (*c* / 2*L*) Lorentz-type modes with a bandwidth of Δv_r .

If: $R = R_1 = R_2 = 0.98$ and L = 0.5 m

$$\Delta v = v_{n+1} - v_n = \frac{3 \cdot 10^8}{2 \cdot 0.5} Hz = 300 MHz, \quad \Delta v_r \approx 2MHz.$$

Laser Physics 14

 R_{1}

 R_{2}

Quality (Q) factor

Ex.: $R = R_1 = R_2 = 0.98$; L = 0.5 m, $v = 5 \cdot 10^{14} Hz$ (0.6 μ m)

$$Q = 2.5 \cdot 10^8$$

Q increases with increasing resonator lifetime, high Q-values can be achieved in a resonator when the bandwidth of the modes is small!

Types of resonators

Mirrors can be rectangular or circular, plane, concave or convex, in a distance of few cm's to few meters. Dimensions of the mirrors are typically few mm's or cm.

The geometry determines:

- the volume of the modes in the cavity,
- the gain,
- properties of the laser beam such as diameter and divergence.

Types of resonators

1. Plane parallel (or Fabry-Perot) resonator

Superposition of two plane waves traveling in opposite directions along the cavity axis.

$$L = n \frac{\lambda}{2}$$
, *n* pozitive integer, $v_n = \frac{c}{\lambda} = n \frac{c}{2L}$

2. Concentric or spherical resonator (*R* is radius)

 Superposition of two oppositely traveling spherical waves. The resonant frequencies are equal with the frequencies of the Fabry-Perot resonator.

L = 2R

Types of resonators (cont.)

3. Confocal resonator (special role)

$$L = R, R_1 = R_2 = R, F_1 = F_2 = F$$

The modes are not plane or spherical waves and the resonant frequencies have no simple form.

4. Plane and spherical mirror combinations

hemi-confocal (half of 3.)

23

hemi-spherical (half of 2.)

Types of resonators (cont.)

5. General resonator

Two mirrors with optional spherical radius in a distance of *L*. Task: determination of the spatial distribution, the frequency and the loss of the modes. Two categories:

stable resonator

rays remain inside, repeated ray-paths unstable resonator

after some round-trip the ray diverges from the cavity

Passive optical resonators

<u>Plane parallel resonator</u> – approximate determination of $v_{l,m,n}$ frequencies $2a = I\frac{\lambda}{2} \quad k_{x} = \frac{2\pi}{\lambda} = \frac{I\pi}{2a} \quad |\underline{k}| = \frac{2\pi}{\lambda} = \frac{2\pi\nu}{C}$ v^{1} $\lambda = \frac{4a}{I}$ $k_y = \frac{m\pi}{2a}$ $k_z = \frac{n\pi}{I}$ $\left|\underline{k}\right| = \sqrt{k_x^2 + k_y^2 + k_z^2}$ 2a 2a Z 🕊 $v_{l,m,n} = \frac{c|\underline{k}|}{2\pi} = \frac{c}{2} \left| \left(\frac{n}{L}\right)^2 + \left(\frac{m}{2a}\right)^2 + \left(\frac{l}{2a}\right)^2 \right|^{\frac{1}{2}}$ Removing side walls \rightarrow open resonator, *I*, *m* << *n* (in practice 0, 1 or 2) degeneration! $V_{l,m,n} = \frac{c n}{2L} \left[1 + \left(\frac{L}{n}\right)^2 \left\{ \left(\frac{m}{2a}\right)^2 + \left(\frac{l}{2a}\right)^2 \right\}^2 \right]^{1/2} \cong \frac{c}{2} \left(\frac{n}{L} + \frac{L m^2 + l^2}{2n 4a^2}\right) \right]$ longitudinal transverse $\sqrt{1+x} \cong 1 + \frac{1}{2}x$, for small x indexes Laser Physics 14

Passive optical resonators

Plane parallel resonator – approximate determination of *l,m,n* frequencies Distance of two consecutive longitudinal modes: $\Delta v_n = v_{l,m,n+1} - v_{l,m,n} = \frac{c}{2L}$ If *L* = 0.5 *m*, $\Delta v_n = 3 \cdot 10^8 \text{ s}^{-1} = 300 \text{ MHz}$. Typical order of magnitude: 100 MHz , Distance of two consecutive transverse modes:

$$\Delta v_{m} = v_{l,m+1,n} - v_{l,m,n} = \frac{cL}{8na^{2}} \left\{ \frac{(m+1)^{2} - m^{2}}{2} \right\} = \frac{cL}{8na^{2}} \left(m + \frac{1}{2} \right)$$

Typical order of magnitude : ~ MHz

Passive optical resonators

<u>Plane parallel resonator</u> – amplitude distribution of transverse modes and calculation of the loss Scalar diffraction theory (condition: uniform polarization of the e.m. field). The Kirchhoff diffraction integral P_1 2aθ $U_2(P_2) = -\frac{i}{2\lambda} \int_1^{\infty} \frac{U_1(P_1) \exp(ikr)(1 + \cos\theta)}{r} dS_1$ → z dS, If U is the amplitude distribution of a resonator *P*, 2a y_1 y_2 mode and the two mirror are identical, $U_1(P_1)$ and L $U_2(P_2)$ can differ only with a constant factor. $\sigma U(P_2) = -\frac{i}{2\lambda} \int_1^{\infty} \frac{U(P_1) \exp(ikr)(1 + \cos\theta)}{r} dS_1, \quad \sigma = |\sigma| \exp(i\phi),$ $\gamma_d = 1 - |\sigma|^2$ diffraction loss and phase shift for a Numerical $2\phi = 2\pi \cdot q$ round-trip in the resonator, q is a positive integer solution! Laser Physics 14

Passive optical resonators

<u>Plane parallel resonator</u> – amplitude distribution of transverse modes and calculation of the loss (cont.)

symmetrical mode

The parameter *N* in figures is the Fresnel number, the ratio of the geometrical angle and twice the diffraction angle:

$$N = \frac{\theta_g}{\frac{\omega}{def}} = \frac{a}{L} \cdot \frac{a}{\lambda} = \frac{a^2}{L \cdot \lambda}, \quad \theta_d = \beta \frac{\lambda}{2a} \quad \beta \approx 1, \quad \theta_g = \frac{a}{L}.$$

<u>Plane parallel resonator</u> – amplitude distribution of transverse modes and calculation of the loss (cont.)

 γ_d depends on N and the transverse mode indices I and m, and independent

The notation of the transverse modes is TEM_{ml}

<u>transverse</u><u>electrom</u>agnetic mode

