Dr. Katalin Kamarás (Wigner, SZFI) kamaras.katalin@wigner.hu Dr. Sándor Bordács (BME, FT) bordacs.sandor@ttk.bme.hu

Optical Spectroscopy in Materials Science Response functions from quantum mechanics

Interaction between light and matter in quantum mechanics

Semi-classical approach in linear optics:

- electrons are described by quantum mechanics
- electromagnetic field is classical (not quantized)

$$
\begin{aligned}
& H=\frac{(p-e A)^{2}}{2 m}+V+e \phi \\
& H_{0}=\frac{p^{2}}{2 m}+V \\
& H_{\mathrm{int}} \approx \frac{e(p A+A p)}{2 m}+e \phi
\end{aligned}
$$

Electromagnetic potentials:

$$
E=-\nabla \phi-\frac{\partial A}{\partial t}
$$

$$
\text { Gauge freedom } A^{\prime}=A+\nabla \Lambda
$$

$$
\phi^{\prime}=\phi-\frac{\partial \Lambda}{\partial t}
$$

Following equations are satisfied by definition:

$$
\begin{aligned}
& \nabla \cdot \mathrm{B}=0 \\
& \nabla \times \mathrm{E}=-\partial_{t} \mathrm{~B}
\end{aligned}
$$

The other two equations:

$$
\begin{aligned}
& \nabla \cdot \mathrm{E}=\frac{1}{\varepsilon_{0}} \rho \\
& \left.\nabla \times \mathrm{B}=\mu_{0}\left(\mathrm{j}+\varepsilon_{0} \partial_{t} \mathrm{E}\right)\right] \quad\left[\nabla(\nabla \cdot \mathrm{A})-\nabla^{2} \mathrm{~A}=\mu_{0} \mathrm{j}\right.
\end{aligned}
$$

Dynamic potentials in the long wavelength limit
In the long wavelength limit, $\lambda \gg a$:

$$
\begin{aligned}
& E_{\nu}(x)=E_{\nu}(0)+\left.\left(\partial_{\mu} E_{\nu}\right)\right|_{0} x_{\mu}+\ldots \\
& B_{\nu}(x)=B_{\nu}(0)+\left(\partial_{\mu} B_{\nu}\right) \|_{0} x_{\mu}+\ldots
\end{aligned}
$$

Statement 1.: The following expansion of the potentials describes the fields in the long wavelength limit

$$
\begin{aligned}
& \phi(x)=\phi(0)-x_{\alpha} E_{\alpha}(\theta)-\left.\frac{1}{2} x_{\alpha} x_{\beta}\left(\partial_{\beta} E_{\alpha}\right)\right|_{0}+\ldots \\
& A_{\alpha}(x)=\frac{1}{2} \varepsilon_{\alpha \beta \gamma} B_{\beta}(0) x_{\gamma}+\left.\frac{1}{3} \varepsilon_{\alpha} \delta x_{\beta}\left(\partial_{\beta} B_{\gamma}\right)\right|_{\alpha} x_{\delta}+\ldots
\end{aligned}
$$

Proof:

$$
\begin{aligned}
& E_{\nu}=-\partial_{\nu} \phi-\partial_{\epsilon} A_{\nu} \\
& =-\rho_{\nu} \phi(\varepsilon)+\left(\partial_{\nu} x_{\alpha}\right) E_{\alpha}(\varepsilon)+\left.\frac{1}{2} \partial_{\nu}\left(x_{\alpha} x_{\beta}\right)\left(\partial_{\beta} E_{\alpha}\right)\right|_{\varepsilon}-\theta_{t \frac{1}{2}} \varepsilon_{\nu \beta \gamma} \beta_{\beta}(\Omega) x_{\gamma} \\
& =\emptyset+\delta_{\nu \alpha} E_{\alpha}(0)+\left.\frac{1}{2}\left(\delta_{\nu \alpha} x_{\beta}+\delta_{\nu p} x_{\alpha}\right)\left(n_{\beta} E_{\alpha}\right)\right|_{\underline{o}}+\frac{1}{2} \varepsilon_{\nu \beta \gamma} \underbrace{\left[-\theta_{t} \beta_{\beta}(\theta)\right]}_{\varepsilon_{\beta \alpha \mu}\left(\theta_{\alpha} E_{n}\right)} x_{\gamma} \\
& \text { as } \nabla \times E=-\lambda_{t} B
\end{aligned}
$$

Dynamic potentials in the long wavelength limit
In the long wavelength limit, $\lambda \gg \mathrm{a}$:

$$
\begin{aligned}
& E_{\nu}(x)=E_{\nu}(0)+\left.\left(\partial_{\mu} E_{\nu}\right)\right|_{0} x_{\mu}+\ldots \\
& B_{\nu}(x)=B_{\nu}(0)+\left(\partial_{\mu} B_{\nu}\right) \|_{0} x_{\mu}+\ldots
\end{aligned}
$$

Statement 1.: The following expansion of the potentials describes the fields in the long wavelength limit

$$
\begin{aligned}
& \phi(x)=\phi(0)-x_{\alpha} E_{\alpha}(\theta)-\left.\frac{1}{2} x_{\alpha} x_{\beta}\left(\theta_{\beta} E_{\alpha}\right)\right|_{0}+\ldots \\
& A_{\alpha}(x)=\frac{1}{2} \varepsilon_{\alpha \beta \gamma} B_{\beta}(\theta) x_{\gamma}+\left.\frac{1}{3} \varepsilon_{\alpha} \delta x_{\beta}\left(\partial_{\beta} B_{\gamma}\right)\right|_{\alpha} x_{\delta}+\ldots
\end{aligned}
$$

Proof:

$$
\begin{aligned}
E_{\nu}(\underline{x}) & =E_{\alpha}(0)+\frac{1}{2}\left(\left.x_{\beta}\left(\partial_{\beta} E_{\nu}\right)\right|_{0}+\left.x_{\alpha}\left(\partial_{\nu} E_{\alpha}\right)\right|_{0}\right)+\frac{1}{2}\left(\delta_{\alpha \gamma} \delta_{\nu \mu}-\delta_{\gamma \mu} \delta_{\nu \mu}\right)\left(\partial_{\alpha} E_{\mu}\right) \|_{\gamma} \\
& =E_{\nu}(0)+\frac{1}{2}\left(\left.\left(\partial_{\beta} E_{\nu}\right)\right|_{0} x_{\beta}+\left.\left(\theta_{\nu} E_{\alpha}\right)\right|_{0} x_{\alpha}\right)+\frac{1}{2}\left(\left.\left(\partial_{\gamma} E_{\nu}\right)\right|_{0} x_{\gamma}-\left(\partial_{\nu} E_{\mu}\right)\left(x_{\mu}\right)\right. \\
& =E_{\nu}(0)+\left.\left(\partial_{\beta} E_{\nu}\right)\right|_{0} x_{\beta}
\end{aligned}
$$

Dynamic potentials in the long wavelength limit
In the long wavelength limit, $\lambda \gg \mathrm{a}$:

$$
\begin{aligned}
& E_{\nu}(x)=E_{\nu}(0)+\left.\left(\partial_{\mu} E_{\nu}\right)\right|_{0} x_{\mu}+\ldots \\
& B_{\nu}(x)=B_{\nu}(0)+\left.\left(\partial_{\mu} B_{\nu}\right)\right|_{0} x_{\mu}+\ldots
\end{aligned}
$$

Statement 1.: The following expansion of the potentials describes the fields in the long wavelength limit

$$
\begin{aligned}
& \phi(x)=\phi(\alpha)-x_{\alpha} E_{\alpha}(\theta)-\left.\frac{1}{2} x_{\alpha} x_{\beta}\left(\partial_{\beta \beta} E_{\alpha}\right)\right|_{0}+\ldots \\
& A_{\alpha}(x)=\frac{1}{2} \varepsilon_{\alpha \beta \gamma} B_{\beta}(0) x_{\gamma}+\left.\frac{1}{3} \varepsilon_{\alpha} \delta x_{\beta}\left(\partial_{\beta} B_{\gamma}\right)\right|_{\alpha} x_{\delta}+\ldots
\end{aligned}
$$

Proof:

$$
\begin{aligned}
B_{\nu}(\underline{x}) & =\varepsilon_{\nu \mu \alpha} \sigma_{\mu} A_{\alpha}(x)=\varepsilon_{\nu \mu \alpha} \partial_{\mu}\left(\frac{1}{2} \varepsilon_{\alpha \beta \gamma} B_{\beta}(0) X_{\gamma}+\left.\frac{1}{3} \varepsilon_{\alpha} \delta_{\beta} x_{\beta}\left(\sigma_{\beta} B_{\gamma}\right)\right|_{\delta}\right) \\
& =\frac{1}{2} \varepsilon_{\nu \mu \alpha} \varepsilon_{\alpha \beta \gamma} B_{\beta}(0) \delta_{\mu \gamma}+\left.\frac{1}{3} \varepsilon_{\Delta \mu \alpha} \varepsilon_{\alpha \gamma \delta}\left(\partial_{\beta} B_{\gamma}\right)\right|_{0}\left(\delta_{\mu \beta} x_{\delta}+\delta_{\mu \delta} x_{\beta}\right) \\
& =\frac{1}{2} \varepsilon_{\nu \mu \alpha} \varepsilon_{\beta \gamma \alpha} B_{\beta}(0)+\frac{1}{3} \varepsilon_{\nu \beta \alpha} \varepsilon_{\gamma \delta \alpha}\left(\sigma_{\beta} B_{\gamma}\right)\left(\delta_{\delta}+\frac{1}{3} \varepsilon_{\nu \mu \alpha} \varepsilon_{\gamma \mu \alpha}\left(\left.\sigma_{\beta} B_{\delta_{b}}\right|_{\beta}\right.\right.
\end{aligned}
$$

Dynamic potentials in the long wavelength limit
In the long wavelength limit, $\lambda \gg a$:

$$
\begin{aligned}
& E_{\nu}(x)=E_{\nu}(0)+\left.\left(\partial_{\mu} E_{\nu}\right)\right|_{0} x_{\mu}+\ldots \\
& B_{\nu}(x)=B_{\nu}(0)+\left(\partial_{\mu} B_{\nu}\right) \|_{0} x_{\mu}+\ldots
\end{aligned}
$$

Statement 1.: The following expansion of the potentials describes the fields in the long wavelength limit

$$
\begin{aligned}
& \phi(x)=\phi(0)-x_{\alpha} \varepsilon_{\alpha}(\theta)-\left.\frac{1}{2} x_{\alpha} x_{\beta}\left(\rho_{\beta} E_{\alpha}\right)\right|_{0}+\ldots \\
& A_{\alpha}(x)=\frac{1}{2} \varepsilon_{\alpha \beta \gamma} B_{\beta}(0) x_{\gamma}+\left.\frac{1}{3} \varepsilon_{\alpha} \delta x_{\beta}\left(\partial_{\beta} B_{\gamma}\right)\right|_{\alpha} x_{\delta}+\ldots
\end{aligned}
$$

Proof:

$$
\begin{aligned}
& \text { f: note: } \sum_{\alpha \beta \beta} \varepsilon_{\nu \mu \alpha} \varepsilon_{\beta \mu \alpha}=2 \sum_{\beta} \delta_{\nu \beta} \\
& =\frac{1}{2} 2 \delta_{\nu \beta} B_{\beta}(0)+\left.\frac{1}{3}\left(\delta_{\mu \gamma} \delta_{\beta \delta}-\delta_{\nu \delta} \delta_{\beta \gamma}\right)\left(\varepsilon_{\beta} B_{\gamma}\right)\right|_{0} x_{\gamma}+\frac{1}{3} 2 S_{\nu \gamma}\left(\partial_{\beta} B_{\gamma}\right)_{0} x_{\beta} \\
& =B_{\nu}(0)+\left.\frac{1}{3}\left(\partial_{\beta} B_{\nu}\right)\right|_{x_{\beta}}-\left.\frac{1}{3}\left(\partial_{\beta} B_{\beta}\right)\right|_{0} x_{\nu}+\left.\frac{2}{3}\left(a_{\beta} B_{\nu}\right)\right|_{0} x_{\beta} \\
& =B_{\nu}(0)+\left.\left(\sigma_{\beta} B_{\nu}\right)\right|_{0} x_{\beta}
\end{aligned}
$$

Dynamic potentials in the long wavelength limit

$$
\begin{aligned}
& \text { In the long wavelength limit, } \lambda \gg a: E_{\nu}(x)=E_{\nu}(0)+\left.\left(\partial_{\mu} E_{\nu}\right)\right|_{0} x_{\mu}+\ldots \\
& B_{\nu}(x)=B_{\nu}(0)+\left.\left(\partial_{\mu} B_{\nu}\right)\right|_{0} x_{\mu}+\ldots \\
& \phi(x)=\phi(0)-x_{\alpha} E_{\alpha}(0)-\frac{1}{2} x_{\alpha} \times\left.\beta\left(\partial_{\beta} E_{\alpha}\right)\right|_{0}+\ldots \\
& A_{\alpha}(x)=\frac{1}{2} \varepsilon_{\alpha \beta \gamma} B_{\beta}(0) x_{\gamma}+\left.\frac{1}{3} \varepsilon_{\alpha \gamma \delta} x_{\beta}\left(\partial_{\beta} B_{\gamma}\right)\right|_{\alpha} x_{\delta}+\ldots
\end{aligned}
$$

Statement 2.: This expansion satisfies $\nabla \cdot A=0$ (Coulomb gauge)
Proof:

$$
\begin{array}{r}
\partial_{\alpha} A_{a}=\frac{1}{2} \varepsilon_{\alpha \beta \gamma} B_{\beta}(0) \partial_{\alpha} X_{\gamma}=\frac{1}{2} \varepsilon_{\alpha} \rho \gamma B_{\beta}(0) \cdot \delta_{\alpha \gamma}=0 \\
\text { anti-symmetric }=0 \\
\text { symmetric }
\end{array}
$$

In the Coulomb gauge $[p, A]=0$

Ligth-matter interaction in the long wavelength limit

$$
\begin{aligned}
& \text { Using the expansion: } \phi(x)=\phi(0)-x_{\alpha} E_{\alpha}(0)-\left.\frac{1}{2} x_{\alpha} x_{\beta}\left(\theta_{\beta} E_{\alpha}\right)\right|_{0}+\ldots \\
& A_{\alpha}(x)=\frac{1}{2} \varepsilon_{\alpha \beta \gamma} B_{\beta}(0) x_{\gamma}+\left.\frac{1}{3} \varepsilon_{\alpha} \delta x_{\beta}\left(\partial_{\beta} B_{\gamma}\right)\right|_{\alpha} x_{\delta}+\ldots \\
& \mathcal{H}_{\text {int }}=\frac{-e}{2 m} \cdot(P \cdot \underline{A}+\underline{A} \cdot p)+e \phi-g \mu_{B} \underline{B} \cdot \underline{B} \quad \text { (leman term is included) } \\
& =-\frac{e}{2 m} \varepsilon_{\alpha \beta \gamma} B_{\beta}(0) x_{\gamma} P_{\alpha}+e\left(\phi(0)-x_{\alpha} E_{\alpha}(0)-\left.\frac{1}{2} x_{\alpha} x_{\beta}\left(\partial_{\beta} E_{2}\right)\right|_{0}\right)-g \mu_{\beta} s_{\alpha} B_{\alpha}(0) \\
& \begin{array}{l}
\text { far from charges } \\
\text { generating the field: }\left.\left(\rho_{\beta} E_{\beta}\right)\right|_{0}=0
\end{array} \\
& =e \phi(0)-e x_{\alpha} E_{\alpha}(0)-\left.\frac{1}{3}\left[\frac{e_{2}}{2} 3 x_{\alpha} x_{\beta}-(x)^{2} \delta_{\alpha \beta}\right]\left(\rho_{\alpha} E_{\beta}\right)\right|_{0}-\frac{e \hbar}{2 m}\left(L_{\alpha / \hbar}+g S_{\alpha / \hbar}\right) B_{\alpha}(0) \\
& A_{i k t}=-\mu_{\alpha} E_{\alpha}(0)-\left.\frac{1}{3} \theta_{\alpha \beta}\left(\beta_{\alpha} E_{\beta}\right)\right|_{0}-\operatorname{mn}_{\alpha} B_{\alpha}(0)
\end{aligned}
$$

Absorption from time-dependent perturbation theory

$$
\begin{gathered}
S=E \times H=\frac{q}{\omega \mu_{0}} E_{0}^{2} \\
\frac{d I}{d z}=-\alpha I
\end{gathered}
$$

$I \alpha d z=\frac{W_{h \rightarrow m}}{d A} \cdot \hbar \omega$

Power loss in unit volume: $\mathrm{dI} / \mathrm{dz}$

$$
\alpha=\frac{\frac{W_{h} \rightarrow m}{d A d z} \cdot \hbar \omega}{I}=\frac{2 \pi \mu_{0} c}{V n} \cdot \frac{\omega}{E^{2}} K m\left|M_{n}+\right| n X^{2} \delta\left(E_{n}-E_{n}-E_{E_{0}}\right)
$$

Fermi's golden rule:

$$
\left.\left.W_{n \rightarrow m}=\frac{2 \pi}{\hbar}\left|\langle m| K_{n}\right| n\right\rangle\right\rangle\left.\right|^{2} \delta\left(E_{m}-E_{n}-\hbar \omega\right)
$$

Order of magnitude estimate of the multipole terms
Electric dipole excitations are usually far stronger:

$$
\begin{aligned}
& \frac{\alpha_{E_{1}}}{\alpha_{M A}} \sim \frac{(e a \cdot E)^{2}}{\left(\mu_{B} \cdot B\right)^{2}} \simeq\left(\frac{e a \cdot E}{\frac{e \hbar}{m} \cdot E / c}\right)^{2}=\left(\frac{c}{\frac{\hbar / a}{m}}\right)^{2}=\left(\frac{c}{\sigma}\right)^{2} \sim 10^{4} \cdot 10^{5} \\
& \frac{\alpha_{E 1}}{\alpha_{E L}} \sim \frac{(e a \cdot E)^{2}}{\left(e a^{2} \cdot g E\right)^{2}} \sim\left(\frac{\lambda}{a}\right)^{2} \sim 10^{4}
\end{aligned}
$$

a - typical length scale of the electron could
v - typical velocity of the electrons
μ_{B} - Bohr magneton

$$
v \approx \frac{\hbar}{m a}
$$

Optical response functions from Kubo formula
When the system is driven by a perturbation
the response can be calculated $\left\langle\delta B(t)=\int X_{B A}\left(t-t^{\prime}\right) f\left(t^{\prime}\right) d t^{\prime}\right.$

$$
\begin{aligned}
& \text { works for a general (even } \\
& \text { interacting) system } \\
& \text { - close to equilibrium: response } \\
& \text { comes from an expectation } \\
& \text { value calculated in equilibrium }
\end{aligned}
$$

$$
\begin{aligned}
& \alpha(t)-i \theta t \sum^{i} e^{-s E_{n}}-e^{-p \varepsilon_{n}}-i \omega_{m n} t \quad \quad \hbar \omega_{m n}=E_{m}-E_{n}
\end{aligned}
$$

Optical response functions from Kubo formula
When the system is driven by a perturbation $\quad \mathscr{N}_{\text {int }}=-\hat{A} \cdot f(t)$
the response can be calculated $\left\langle\delta B\left(\frac{t}{t}\right)\right\rangle=\int X_{B A}\left(t-t^{\prime}\right) f\left(t^{\prime}\right) d t^{\prime}$

$$
\text { Kubo formula: } \quad X(x)=\frac{i}{B A} A(v)\langle B(t), A(0)]
$$

- works for a general (even interacting) system
- close to equilibrium: reponse comes from an expectation value calculated in equilibrium
Spectral decomposition:

$$
X_{B A}(\omega)=-\frac{1}{\hbar} \sum_{u, m} \frac{e^{-\beta E_{m}}-e^{-\beta E_{n}}}{z}\langle u| B\left|m_{m}\right\rangle\langle m| A|u\rangle \frac{1}{\omega-\omega_{m n}+i j}
$$

Optical response functions from Kubo formula
When the system is driven by a perturbation $\quad \not_{\text {int }}=-\hat{A} \cdot f(t)$
the response can be calculated $\langle\delta B(t)\rangle=\int X_{B A}\left(t-t^{\prime}\right) f\left(t^{\prime}\right) d t^{\prime}$

Kubo formula:

$$
X_{A+A}(t)=i A_{(\tau)}\left|\left[B(t), A_{(0)}\right]\right\rangle_{0}
$$

- works for a general (even interacting) system
- close to equilibrium: repose comes from an expectation value calculated in equilibrium
Spectral decomposition:

$$
\begin{aligned}
& =-\frac{2}{\pi} \sum_{m} \frac{\omega_{m_{0}} \operatorname{Re}\left\{\langle 0| B\left|\omega_{n}\right\rangle\langle m| A|0\rangle\right\}+i(\omega+i \delta) \ln \left\{\left\langle\langle | B \mid n_{0}\right\rangle\langle m| A|0\rangle\right\}}{(\omega+i \delta)^{2}-\omega_{0}^{2}} \\
& =X_{B A}^{k}(\omega)+i X_{B A}^{1 / m}(\omega) \\
& X_{A B}(\omega)=X_{B A}^{B e}(\omega)-i X_{B A}^{R_{m}}(\omega)
\end{aligned}
$$

Applications of the Kubo formula
Time reversal symmetry
$\hat{A} \xrightarrow{T} \varepsilon_{A} \hat{A} \quad \varepsilon_{A}= \pm 1$

$$
\begin{aligned}
X_{B A}(\omega, M) & =X_{A B}(\omega,-M) \varepsilon_{A} \varepsilon_{B} \\
X_{A A}(\omega, M) & =X_{A A}(\omega,-M) \\
X_{B A}(\omega, M) & =X_{B A}^{k}(\omega, M)+i X_{B A}^{m_{n}}(\omega, M) \\
& =\varepsilon_{A} \varepsilon_{B}\left(X_{A B}^{R}(\omega,-\mu)+i X_{A B}^{\operatorname{m}}(\omega,-\mu)\right) \\
& =\varepsilon_{A} \varepsilon_{B}\left(X_{B A}^{R}(\omega,-M)-i X_{B A}^{\ln }(\omega,-\mu)\right)
\end{aligned}
$$

$$
\underline{X}^{c}=\left[\begin{array}{ll}
x_{x x}^{k} & x_{x}^{k} \\
x_{x y}^{k} & x_{y x}^{k}
\end{array}\right]+\left[\begin{array}{cc}
0 & x_{y y}^{n} \\
-x_{x}^{i n} & 0 \\
\vdots &
\end{array}\right]
$$

$X_{\mu_{x} m_{x}}^{e m_{m}} \varepsilon_{\mu_{x}}=1, \varepsilon_{m_{x}}=-1$

Applications of the Kubo formula

Charge susceptibility and dielectric response $P_{x}(\omega)=\varepsilon_{0} X_{x x}^{c} E_{x}^{(c)}$

$$
\begin{gathered}
\chi_{\mu_{x} \mu_{x}}^{(\omega)} E_{x}(\omega)=P_{x}(w) \cdot V \\
\chi_{x x}^{c}=\frac{1}{\varepsilon_{0} V} \chi_{\mu_{x} \mu_{x}} \\
\left.\chi_{x x}=-\frac{2}{\hbar \varepsilon_{0} V} \sum_{n} \omega_{n 0}\left|\langle n| \mu_{x}\right| 0\right\rangle\left.\right|^{2} \frac{1}{(\omega+i \delta)^{2}-\omega_{n 0}^{2}}
\end{gathered}
$$

For non-interacting particles the wave function is a (anti-symmetrized) product of single particle states

$$
\left.\chi_{x x}=-\frac{2 e^{2}}{\hbar \varepsilon_{0}} \frac{N}{V} \sum_{n} \omega_{n 0}|\langle n| x| 0\right\rangle\left.\right|^{2} \frac{1}{(\omega+i \delta)^{2}-\omega_{n 0}^{2}}
$$

single particle energies and wave functions
Oscillator strength: $\left.\quad f_{n 0}=\frac{2 m \omega_{n 0}}{\hbar}|\langle n| x| 0\right\rangle\left.\right|^{2}$

Applications of the Kubo formula

f-sum rule (integral of the intensity)

$$
\begin{aligned}
\sum_{n} f_{n 0} & \left.=\sum_{n} \frac{2 m \omega_{n 0}}{\hbar}|\langle n| x| 0\right\rangle\left.\right|^{2} \\
& =\frac{m}{\hbar^{2}} \sum_{n}\langle 0| x|n\rangle\left(\varepsilon_{n}-\varepsilon_{0}\right)\langle n| x|0\rangle+\langle 0| x|n\rangle\left(\varepsilon_{n}-\varepsilon_{0}\right)\langle n| x|0\rangle \\
& =\frac{m}{\hbar^{2}} \sum_{n}\langle 0| x|n\rangle\langle n|[H, x]|0\rangle-\langle 0 \mid[H, x] n\rangle\langle n| x|0\rangle \\
& \left.=\frac{m}{\hbar^{2}}\langle 0|[x,[H, x]]|0\rangle\right] \text { general result } \\
& =\frac{m}{\hbar^{2}}\langle 0|\left[x,\left[\frac{p^{2}}{2 m}, x\right]|0\rangle=1\right.
\end{aligned}
$$

for electric dipole transitions

$$
\sum f_{n}=1
$$

$$
\int_{0}^{\infty} \sigma^{\prime}(\omega) d \omega=\int_{0}^{\infty} \varepsilon_{0} \omega \chi^{\prime \prime}(\omega) d \omega=\frac{\pi n e^{2}}{2 m} \sum_{n} f_{n 0}=\frac{\pi n e^{2}}{2 m}
$$

Excitations of hydrogen (like) atoms

$$
H_{0}=\frac{p^{2}}{2 m}-\frac{1}{4 \pi \varepsilon_{0}} \frac{Z e^{2}}{r}
$$

Solution without the radiation

$$
\begin{aligned}
& E_{n}=-\frac{Z e^{2}}{8 \pi \varepsilon_{0} a_{0}} \frac{1}{n^{2}} \\
& |n, l, m\rangle=R\left(Z r / n a_{0}\right) Y_{l}^{m}(\vartheta, \varphi)
\end{aligned}
$$

Which transitions can be excited? (selection rules)

$$
\begin{aligned}
& \left\langle n^{\prime}, l^{\prime}, m^{\prime}\right| x|n, l, m\rangle=? \\
& =\int R\left(Z r / n^{\prime} a_{0}\right) Y_{l^{\prime}}^{m^{\prime}}(\vartheta, \varphi) x R\left(Z r / n a_{0}\right) Y_{l}^{m}(\vartheta, \varphi) d r \frac{d \Omega}{4 \pi} \\
& Y_{1}^{-1}(\theta, \varphi)=\quad \frac{1}{2} \sqrt{\frac{3}{2 \pi}} \cdot e^{-i \varphi} \cdot \sin \theta=\frac{1}{2} \sqrt{\frac{3}{2 \pi}} \cdot \frac{(x-i y)}{r} \\
& Y_{1}^{0}(\theta, \varphi)=\quad \frac{1}{2} \sqrt{\frac{3}{\pi}} \cdot \cos \theta \quad=\frac{1}{2} \sqrt{\frac{3}{\pi}} \cdot \frac{z}{r} \\
& Y_{1}^{1}(\theta, \varphi)=\quad-\frac{1}{2} \sqrt{\frac{3}{2 \pi}} \cdot e^{i \varphi} \cdot \sin \theta \quad=\quad-\frac{1}{2} \sqrt{\frac{3}{2 \pi}} \cdot \frac{(x+i y)}{r} \\
& \text { [wikipedia] }
\end{aligned}
$$

Excitations of hydrogen (like) atoms

$$
H_{0}=\frac{p^{2}}{2 m}-\frac{1}{4 \pi \varepsilon_{0}} \frac{Z e^{2}}{r}
$$

$$
\stackrel{s(1)}{\bar{\square}} \xlongequal{\bar{\rho}(3)} \stackrel{d(5)}{\overline{\#}}
$$

Solution without the radiation

$$
\begin{aligned}
& E_{n}=-\frac{Z e^{2}}{8 \pi \varepsilon_{0} a_{0}} \frac{1}{n^{2}} \\
& |n, l, m\rangle=R\left(Z r / n a_{0}\right) Y_{l}^{m}(\vartheta, \varphi)
\end{aligned}
$$

Which transitions can be excited? (selection rules)

$$
\begin{aligned}
& \left\langle n^{\prime}, l^{\prime}, m^{\prime}\right| x|n, l, m\rangle=? \\
& =\int R\left(Z r / n^{\prime} a_{0}\right) Y_{l^{\prime}}^{m^{\prime}}(\vartheta, \varphi) x R\left(Z r / n a_{0}\right) Y_{l}^{m}(\vartheta, \varphi) d r \frac{d \Omega}{4 \pi} \\
& \propto \int Y_{l^{\prime}}^{m^{\prime}} Y_{1}^{0, \pm 1} Y_{l}^{m} d \Omega \quad \begin{array}{c}
\mathrm{m}^{\prime}=\mathrm{m}+0, \pm 1 \\
\left|I^{\prime}-1\right|= \pm 1
\end{array}
\end{aligned}
$$

Excitations of hydrogen (like) atoms

$$
H_{0}=\frac{p^{2}}{2 m}-\frac{1}{4 \pi \varepsilon_{0}} \frac{Z e^{2}}{r}
$$

Solution without the radiation

$$
\begin{aligned}
& E_{n}=-\frac{Z e^{2}}{8 \pi \varepsilon_{0} a_{0}} \frac{1}{n^{2}} \\
& |n, l, m\rangle=R\left(Z r / n a_{0}\right) Y_{l}^{m}(\vartheta, \varphi)
\end{aligned}
$$

Hydrogen Absorption Spectrum

Balmer series ($\mathrm{n}=2$):

$$
\Delta E=R\left(\frac{1}{n^{2}}-\frac{1}{m^{2}}\right)
$$

Hydrogen Emission Spectrum

Doppler broading of atomic lines

Doppler shif of the frequency of the absorption peak

$$
f=f_{0}\left(1+\frac{v}{c}\right)
$$

Maxwell-Boltzmann velocity distribution

$$
P_{v}(v) d v=\sqrt{\frac{m}{2 \pi k T}} \exp \left(-\frac{m v^{2}}{2 k T}\right) d v
$$

Gaussian broadening of the absorption peak

$$
\begin{aligned}
P_{f}(f) d f & =P_{v}\left(v_{f}\right) \frac{d v}{d f} d f \\
P_{f}(f) d f & =\sqrt{\frac{m c^{2}}{2 \pi k T f_{0}^{2}}} \exp \left(-\frac{m c^{2}\left(f-f_{0}\right)^{2}}{2 k T f_{0}^{2}}\right) d f \\
\sigma_{f} & =\sqrt{\frac{k T}{m c^{2}}} f_{0}
\end{aligned}
$$

a

[Hansch Sci. Am. (1979)]

Broadening eg. for Ba_{α} (Balmer) at room temperature
$\sqrt{\frac{25 \mathrm{meV}}{930 \mathrm{MeV}}} 457 \mathrm{THz} \approx 5 \cdot 10^{-6} \cdot 457 \mathrm{THz} \approx 2.2 \mathrm{GHz}$

Saturation spectroscopy

Fine structure of the hydrogen atom

Relativistic corrections from Dirac equation split and shift the atomic levels, but J remains a good quantum number

Spectroscopic notation:

$$
{ }^{2 \mathrm{~S}}+1 L_{\mathrm{J}}
$$

The Ba_{α} line corresponds to excitations from $\mathrm{n}=2$ to $\mathrm{n}=3$ (notation in the figure $\mathrm{n} L_{\mathrm{J}}$)
$2 \mathrm{~S}_{1 / 2}$
$2 \mathrm{P}_{1 / 2}$

$2 \mathrm{P}_{3 / 2}$$\longrightarrow$| $3 \mathrm{~S}_{1 / 2}$ |
| :---: |
| $3 \mathrm{P}_{1 / 2}$ |
| $3 \mathrm{P}_{3 / 2}$ |
| $3 \mathrm{D}_{1 / 2}$ |
| $3 \mathrm{D}_{3 / 2}$ |

Dielectric response of solids

Charge susceptibility for $\omega>0$:

$$
\left.\chi_{x x}=\frac{e^{2}}{m \varepsilon_{0}} \frac{N}{V} \sum_{n} \frac{2 m \omega_{n 0}}{\hbar}|\langle n| x| 0\right\rangle\left.\right|^{2}\left(\frac{1}{\omega_{n 0}^{2}-\omega^{2}}+i \frac{\pi}{2 \omega} \delta\left(\omega_{n 0}-\omega\right)\right)
$$

Unperturbed Hamilton and its solution in terms of Bloch functions:

$$
\begin{aligned}
& H_{0}=\frac{p^{2}}{2 m}+U(r) \\
& U\left(r+R_{n}\right)=U(r) \\
& \psi_{n}(k)=\frac{1}{\sqrt{V}} e^{i k r} u_{n k}(r)
\end{aligned}
$$

Matrixelements:

$$
\frac{p}{m}=\dot{x}=\frac{i}{\hbar}[H, x]
$$

Momenturn

$$
\langle n| x|0\rangle=\frac{1}{i \omega_{n 0} m}\langle n| p|0\rangle
$$

[wikipedia]

Dielectric response of solids

Charge susceptibility for $\omega>0$:

$$
\left.\chi_{x x}=\frac{e^{2}}{m \varepsilon_{0}} \frac{N}{V} \sum_{n} \frac{2 m \omega_{n 0}}{\hbar}|\langle n| x| 0\right\rangle\left.\right|^{2}\left(\frac{1}{\omega_{n 0}^{2}-\omega^{2}}+i \frac{\pi}{2 \omega} \delta\left(\omega_{n 0}-\omega\right)\right)
$$

Unperturbed Hamilton and its solution in terms of Bloch functions:

$$
\begin{aligned}
& H_{0}=\frac{p^{2}}{2 m}+U(r) \\
& U\left(r+R_{n}\right)=U(r) \\
& \psi_{n}(k)=\frac{1}{\sqrt{V}} e^{i k r} u_{n k}(r)
\end{aligned}
$$

Matrixelements:

Momenturn
[wikipedia]
$\sum_{m} F_{m} e^{i G_{m} r}=u_{c k^{\prime}}^{*}(r)\left(\hbar k+\frac{\hbar}{i} \nabla\right) u_{v k}(r)$
$\left\langle c k^{\prime}\right| p|v k\rangle=\sum_{m} \int \frac{d^{3} r}{V} F_{m} e^{-\left(k^{\prime}-k-G_{m}\right) r} \propto \sum_{m} \delta\left(k^{\prime}-k-G_{m}\right)$

Dielectric response of solids

$$
\begin{aligned}
& \text { Real part of the optical conductivity } \\
& \left.\sigma^{\prime}=\frac{N}{V} \frac{e^{2}}{m^{2}} \sum_{k} \frac{\pi}{\hbar \omega_{c v}}|\langle c k| p| v k\right\rangle\left.\right|^{2} \delta\left(\omega_{c v}-\omega\right) \\
& \sigma^{\prime}=\frac{N}{V} \frac{\pi e^{2}}{2 m} \sum_{k} f \delta\left(\omega_{c v}-\omega\right) \\
& \left.\left.f=\frac{2}{m \hbar \omega_{c v}}|\langle c k| p| v k\right\rangle\left.\right|^{2}=\frac{2 m \omega_{c v}}{\hbar}|\langle c k| x| v k\right\rangle\left.\right|^{2} \\
& J D O S(\omega)=\sum_{k} \delta\left(\omega_{c v}(k)-\omega\right)=2 \int \frac{d^{3} k}{(2 \pi)^{3}} \delta\left(\omega_{c v}(k)-\omega\right) \\
& \hbar \omega_{c v}(k)=\left(E_{g}+\frac{\hbar^{2} k^{2}}{2 m_{c}}\right)-\frac{\hbar^{2} k^{2}}{2 m_{v}}=E_{g}+\frac{\hbar^{2} k^{2}}{2}\left(\frac{1}{m_{c}}+\frac{1}{\left|m_{v}\right|}\right. \\
& J D O S(\omega)=\int \frac{d \omega_{c v}}{2 \pi^{2}}\left(\frac{2 m_{r}}{\hbar^{2}}\right)^{3 / 2} \sqrt{\omega_{c v}-E_{g} / \hbar} \delta\left(\omega_{c v}(k)-\omega\right) \\
& J D O S(\omega)=\frac{1}{2 \pi^{2}}\left(\frac{2 m_{r}}{\hbar^{2}}\right)^{3 / 2} \sqrt{\omega-E_{g} / \hbar}
\end{aligned}
$$

Direct band gap semiconductors

[Grüner\&Dressel]

Indirect band gap semiconductors

Excitons

J. Appl. Phys., Vol. 86, No. 8, 15 October 1999

Applications of the Kubo formula

Sum rule (more generally)

$$
\begin{gathered}
\left.\int_{0}^{\infty} \omega \chi_{A A}{ }^{\prime \prime}(\omega) d \omega=-\frac{1}{\hbar} \sum_{n, m} \frac{e^{-\beta E_{n}}-e^{-\beta E_{m}}}{Z} \omega_{n m}|\langle n| A| m\right\rangle\left.\right|^{2} \\
\int_{0}^{\infty} \omega \chi_{A A}{ }^{\prime \prime}(\omega) d \omega=\frac{\pi}{2 \hbar^{2}}\left\langle[A,[H, A]\rangle_{0}\right.
\end{gathered}
$$

