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Quantum Computing - what is it?



Quantum Computing - why should anyone care?

• algorithms solving computational problems can be slow or fast 
• for example, prime factorization is a problem for which only slow 

classical algorithms are known 
• prime factorization is important in information technology & security 
• there is a fast quantum algorithm for prime factorization (Shor)

• many experimental research groups are trying to build and improve 
quantum computer prototypes 

• private funding in quantum information technology increased a lot in 
the past few years (IBM, Google, Intel, Microsoft; Rigetti, Q-Ctrl, etc)

• prototype quantum computers that are available for anyone do exist, 
e.g., IBM Quantum Experience (small, noisy, not useful yet)

QC could be useful

People are interested in QC

Quantum computers do exist
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Classical bits, gates, circuits

OR can be built from NANDs:

Quantum Computing Architectures (v1)

Pályi András
Elméleti Fizika Tanszék, BME

(Dated: September 4, 2018)

I. EXERCISES, CONTROL QUESTIONS

1. List three areas where the performance of quantum computing could exceed that of classical computing.

2. List the three Pauli matrices.

3. Construct a classical circuit that adds two single-bit numbers, using only the NAND gate.

4. Construct a quantum circuit that adds two single-bit numbers.

Ebben a fájlban az előadás menetrendjét követve gyűjtöm össze az egyes témakörökhöz kapcsolódó gyakorló felada-
tokat. A fájl hétről-hétre frissülni fog az adott hét feladataival. A zárthelyiken ehhez hasonló feladatok várhatók.

II. CLASSICAL BITS

• the value of a c-bit is 0 or 1

• operations, gates: a c-logical gate maps n c-bits to m c-bits; e.g., NOT, AND, OR, XOR.

• single-bit gate: n = m = 1

• there is only one non-trivial single-bit gate: NOT

• two-bit gate: n = 2, m = 1, e.g., AND, OR, XOR

• c-gates are not necessarily reversible: e.g., any n > m gate is irreversible

• c-circuit : an arrangement of "wires" and gates

• universal gate set : a set of gates that allows to construct circuits for any algorithm

• exercise: construct a c-circuit that adds two single-bit numbers using only the NAND gate

III. QUANTUM BIT

1. quantum bit, qubit, q-bit, qbit : two-level quantum system

2. state of a qbit: | i = ↵0 |0i+ ↵1 |1i

3. ↵0, ↵1 are called amplitudes

4. normalization condition: |↵0|2 + |↵1|2 = 1

5. alternative notation: |0i ⌘
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0
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6. realizations: electron spin, nuclear spins (e.g., H-1, C-13), superconducting circuits, etc.

truth tables



Quantum bits

Quantum Computing Architectures (v1)

Pályi András
Elméleti Fizika Tanszék, BME

(Dated: September 5, 2018)

I. EXERCISES, CONTROL QUESTIONS

1. List three areas where the performance of quantum computing could exceed that of classical computing.

2. List the three Pauli matrices.

3. Construct a classical circuit that adds two single-bit numbers, using only the NAND gate.

4. Construct a quantum circuit that adds two single-bit numbers.

Ebben a fájlban az előadás menetrendjét követve gyűjtöm össze az egyes témakörökhöz kapcsolódó gyakorló felada-
tokat. A fájl hétről-hétre frissülni fog az adott hét feladataival. A zárthelyiken ehhez hasonló feladatok várhatók.

II. CLASSICAL BITS

• the value of a c-bit is 0 or 1

• operations, gates: a c-logical gate maps n c-bits to m c-bits; e.g., NOT, AND, OR, XOR.

• single-bit gate: n = m = 1

• there is only one non-trivial single-bit gate: NOT

• two-bit gate: n = 2, m = 1, e.g., AND, OR, XOR

• c-gates are not necessarily reversible: e.g., any n > m gate is irreversible

• c-circuit : an arrangement of "wires" and gates

• universal gate set : a set of gates that allows to construct circuits for any algorithm

• exercise: construct a c-circuit that adds two single-bit numbers using only the NAND gate

III. QUANTUM BIT

1. quantum bit, qubit, q-bit, qbit : two-level quantum system

2. state of a qubit: | i = ↵0 |0i+ ↵1 |1i

3. ↵0, ↵1 are called amplitudes; they are complex numbers

4. |0i and |1i are the qubit basis states

5. normalization condition: |↵0|2 + |↵1|2 = 1

6. alternative notation (vector notation or spinor notation):

|0i ⌘
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7. realizations: electron spin, nuclear spins (e.g., H-1, C-13), superconducting circuits, etc.



Dynamics of a qubit 3

V. DYNAMICS OF A QUANTUM BIT

1. time-dependent Schrodinger equation: ˙ (t) = � i

~H(t) (t).

2. for a qubit, H(t) is a 2x2 Hermitian matrix

3. Hamiltonian can be expressed with Pauli matrices

H(t) =
3X

j=0

c
j

(t)�
j

�0 =

✓
1 0

0 1

◆
, �

x

=

✓
0 1

1 0

◆
, �

y

=

✓
0 �i
i 0

◆
, �

z

=

✓
1 0

0 �1

◆
.

4. dynamics for a time-independent Hamiltonian:  (t) = exp

�
� i

~Ht
�
 (0) ⌘ U(t) (0)

5. U(t) is a unitary matrix, called the propagator

6. dynamics for a time-dependent Hamiltonian is also unitary:  (t) = T exp

⇣
� i

~
R
t

0 dt0H(t0)
⌘
 (0) ⌘ U(t) (0)

VI. MEASUREMENT OF A QUBIT

1. | i = ↵0 |0i+ ↵1 |1i

2. the probability of measuring 0 is P0 = |↵0|2

3. the probability of measuring 1 is P1 = |↵1|2 = 1� P0

4. if the outcome of the measurement is 0, then the state changes to |0i

5. if the outcome of the measurement is 1, then the state changes to |1i

VII. GEOMETRICAL REPRESENTATION OF A QUBIT: THE BLOCH SPHERE

1. we can parametrize the qubit state with three angles, �, ✓, �:

| i = ↵0 |0i+ ↵1 |1i = ei�(cos
✓

2

|0i+ ei� sin
✓

2

|1i

2. angle � has no physical significance

3. the qubit state can be mapped to the surface of a unit sphere (Bloch sphere):

| i 7! (✓,�) 7! n =

�
sin ✓ cos�, sin ✓ sin�, cos ✓

�

4. another mapping, seemingly different, but actually identical to n:

p = h |�| i ,

where � = (�
x

,�
y

,�
z

).

5. n ⌘ p is called the Bloch vector or the polarization vector of the qubit



Measurement (`readout’) of a qubit
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Geometrical representation of a qubit: the Bloch sphere
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More qubits
3

VII. MORE QUBITS

1. states of two qubits: | i = ↵00 |00i+ ↵01 |01i+ ↵10 |10i+ ↵11 |11i

2. normalization condition:
P

x2{0,1}2 |↵
x

|2 = 1

3. a single-qubit state can be represented on the Bloch sphere; does not work for multiple-qubit states

4. measurement of one qubit: e.g., of the first one: P0 = |↵00|2 + |↵01|2, and the post-measurement state after
measuring 0 is

| pmi = ↵00 |00i+ ↵01 |01ip
P0

5. example for a two-qubit product state:

| i = 1

2

|00i+ 1

2

|01i+ 1

2

|10i+ 1

2

|11i = |0i+ |1ip
2

⌦ |0i+ |1ip
2

6. example for a two-qubit entangled state:

| i = |00i+ |11ip
2

7. the state of n qubits is described by 2

n amplitudes

VIII. 1-QUBIT QUANTUM GATES

1. q-circuit: an arrangement of "wires" and quantum gates

2. q-gates: unitary operations on a few qubits (reversible, unlike c-gates)

3. 1-qubit gate example: q-NOT (usually called the X gate):

| 1i = ↵ |0i+ � |1i 7! | 2i = ↵ |1i+ � |0i

matrix representation of this gate: X ⌘ �
x

=

✓
0 1

1 0

◆

4. further 1-qubit gate examples:

Z gate: Z = �
z

=

✓
1 0

0 �1

◆

Hadamard gate: H =

1p
2

✓
1 1

1 �1

◆

5. each 1-qubit gate generates a bijective map of the Bloch sphere to itself

6. exercise: determine the transformations generated by 1-qubit gates listed above



3

VII. MORE QUBITS

1. states of two qubits: | i = ↵00 |00i+ ↵01 |01i+ ↵10 |10i+ ↵11 |11i

2. normalization condition:
P

x2{0,1}2 |↵
x

|2 = 1

3. a single-qubit state can be represented on the Bloch sphere; does not work for multiple-qubit states

4. measurement of one qubit: e.g., of the first one: P0 = |↵00|2 + |↵01|2, and the post-measurement state after
measuring 0 is

| pmi = ↵00 |00i+ ↵01 |01ip
P0

5. example for an entangled two-qubit state:

| i = |00i+ |11ip
2

6. the state of n qubits is described by 2

n amplitudes

VIII. 1-QUBIT QUANTUM GATES

1. q-circuit: an arrangement of "wires" and quantum gates

2. q-gates: unitary operations on a few qubits (reversible, unlike c-gates)

3. 1-qubit gate example: q-NOT (usually called the X gate):

| 1i = ↵ |0i+ � |1i 7! | 2i = ↵ |1i+ � |0i

matrix representation of this gate: X ⌘ �
x

=

✓
0 1

1 0

◆

4. further 1-qubit gate examples:

Z gate: Z = �
z

=

✓
1 0

0 �1

◆

Hadamard gate: H =

1p
2

✓
1 1

1 �1

◆

5. each 1-qubit gate generates a bijective map of the Bloch sphere to itself
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1-qubit quantum gates

c-circuit

q-circuit



2-qubit quantum gates
control bit

target bit

5

X. 2-QUBIT QUANTUM GATES

1. 2-qubit gate example: controlled-NOT or CNOT
with the basis-state ordering |00i, |01i, |10i, |11i, it is represented by

UCNOT =

0

B@

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1

CA

it could be represented by a ‘classical’ truth table

2. 1-qubit gates together with CNOT form a unversal q-gate set

XI. DEUTSCH-ALGORITHM

1. A simple oracle problem: f : {0, 1} ! {0, 1} is an unknown function; i.e., it is one of the following 4 functions:

constant (value = 1) constant (value = 0)
0!1 0! 0
1!1 1! 0

balanced (NOT) balanced (id.)
0!1 0! 0
1!0 1! 1

2. task: figure out, by evaluating f a few times, whether f is constant or balanced

3. solution: one has to evaluate f twice, for input 0 and for input 1, and the results will tell if f is constant or
balanced

4. a single evaluation of f is not sufficient to complete the task



IBM Quantum Experience

Quantum Information Processing, BME 2019 Spring

Lecture 1, Feb 6, 2019

Exercises

Akos Budai, Andras Palyi, Zoltan Zimboras
(Dated: February 5, 2019)

I. EXERCISES

Keywords: quantum Hello World, making graphs in python, fitting an exponential in python.

1. Quantum Hello World.
Do a Hadamard gate and measure the qubit afterwards. Use 10 shots.

(a) Define the circuit in the composer. Run the simulator. How many times do you measure the state 1?

(b) Define the circuit in qiskit in a jupyter notebook. Run the circuit in your notebook on your local simulator.
How many times do you measure the state 1?

(c) Homework: Run the circuit on a quantum computer, using the composer.

(d) Homework: Run the circuit on a quantum computer, using qiskit in a jupyter notebook.

2. Draw a circuit.
Visualize the simple circuit above in qiskit in a jupyter notebook. Use the draw() method on the QuantumCircuit
object. (And use google if needed.)

3. Draw a histogram.
Plot the histogram of the data obtained above, using qiskit in the jupyter notebook. (counts of 0, counts of 1)

4. Bell state.
Your goal is to prepare the Bell state 1p

2
(|00i+ |11i) by acting on the first qubit with a Hadamard gate, and

acting with a CNOT on the two qubits, and measuring the two qubits. Draw the circuit on a piece of paper.

(a) Compose the circuit in the composer. Run the circuit from the composer on the simulator.

(b) Define the circuit with qiskit in a jupyter notebook. Run the circuit.

(c) Plot the histogram of the measured data.

5. Plot a function.
Plot the sine function in the [0, 4⇡] interval in a jupyter notebook.

6. Exponential decay.
Generate a noisy exponential decay curve: sample the function f(t) = e�t between the interval [0, 10] in steps
0.1, add a normally distributed random contribution to each data point with a standard deviation of 0.1, and fit
an exponential using exp_fit_fun. What are the three fitting parameters? How do they relate to the parameters
of the original f(t) function? Plot the noiseless data set, the noisy data set, and the fitted curve, in the same
graph.

7. Rabi oscillations on the Bloch sphere.
The Rabi formula states that the time evolution of the polarization vector of a resonantly driven qubit reads

p(t) =

0

@
sin ✓(t) cos(�(t))
sin ✓(t) sin(�(t))

cos ✓(t)

1

A , (1)

where �(t) = !
L

t and ✓(t) = ⌦t. Plot this time evolution as a 3D parametric plot, with ⌦ = 1, !
L

= 10, in the
time window t 2 [0,⇡].



Step 1: launch Anaconda Navigator (bottom left corner)

Step 2: launch jupyter notebook

Step 3: open new notebook (python 3)

Your notebooks will be temporarily stored in  
C:\Users\diak\Documents\!

!
For permanent storage, make a folder 

D:\NeptunCode\!
and copy your notebooks there 

or copy your notebooks to your pendrive.



Quantum Information Processing, BME 2019 Spring

Lecture 1, Feb 6, 2019

Exercises

Akos Budai, Andras Palyi, Zoltan Zimboras
(Dated: February 6, 2019)

I. EXERCISES

Keywords: quantum Hello World, making graphs in python, fitting an exponential in python.

1. Quantum Hello World.
Do a Hadamard gate and measure the qubit afterwards. Use 10 shots.

(a) Define the circuit in the composer. Run the simulator. How many times do you measure the state 1?

(b) Define the circuit in qiskit in a jupyter notebook. Run the circuit in your notebook on your local simulator.
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2. Draw a circuit.
Visualize the simple circuit above in qiskit in a jupyter notebook.

3. Draw a histogram.
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2
(|00i+ |11i) by acting on the first qubit with a Hadamard gate, and

acting with a CNOT on the two qubits, and measuring the two qubits. Draw the circuit on a piece of paper.
Use 1024 shots in what follows.

(a) Compose the circuit in the composer. Run the circuit from the composer on the simulator.

(b) Define the circuit with qiskit in a jupyter notebook. Run the circuit.

(c) Plot the histogram of the measured data.

5. Plot a function.
Plot the sine function in the [0, 4⇡] interval in a jupyter notebook.

6. Exponential decay.
Generate a noisy exponential decay curve: sample the function f(t) = e�t between the interval [0, 10] in steps
0.1, add a normally distributed random contribution to each data point with a standard deviation of 0.1, and
fit an exponential function, g(t) = Ae�t/T1

+ c, to the noisy data. What are the three values of the parameters
A, T1, c obtaind from the fit? How do they relate to the parameters (A = 1, T1 = 1, c = 0) of the original f(t)
function? Plot the noiseless data set, the noisy data set, and the fitted curve, in the same graph.

7. Rabi oscillations on the Bloch sphere.
The Rabi formula states that the time evolution of the polarization vector of a resonantly driven qubit reads

p(t) =
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= 10, in the
time window t 2 [0,⇡].


