Spectroscopy and the structure of matter 3. Raman spectroscopy

Kamarás Katalin MTA Wigner FK kamaras.katalin@wigner.mta.hu

Budapesti Műszaki és Gazdaságtudományi Egyetem

Optical spectroscopy in materials science 3.

1

Raman scattering: history

- C.V. Raman K.S. Krishnan
- L. Mandelstam G. Landsberg ("combination scattering")

Nobel prize for physics 1930

Rayleigh scattering

Infrared absorption and Raman scattering

R:
$$\mu = \mu_0 + (\Delta \mu) \cos \omega_0 t = \mu_0 + \frac{\partial \mu}{\partial r} r \cos \omega_0 t$$

For deformable objects: $\kappa \sim r$, or

change of dipole moment during the vibration

The Raman effect – classical picture

Veres Miklós, MTA Wigner FK

Raman spectroscopy

Light scattering by monochromatic light Spectrum of scattered light relative to the exciting light

- Inelastic scattering can only be observed if the polarizability of the medium changes during the scattering process
- The magnitude of the shift does not depend on the frequency of the exciting light
- The probability of inelastic scattering is small, every one of 10⁸ photons suffers inelastic scattering
- The magnitude of the shift depends on the properties of the medium
- Inelastic scattering happens on elementary excitations of the medium (usually phonons)

Conservation of momentum

Interaction of vibrations with light

Momentum: infrared light $\lambda = 6000$ nm E = 0.2 eV ≈ 50 THz

$$k = \frac{\omega}{c} = \frac{2\pi}{\lambda} \cong 10^4 \, cm^{-1}$$

Typical Brillouin zone: a = 0.6 nm

$$k_{\rm max} = \frac{2\pi}{a} \cong 10^8 \, cm^{-1}$$

Zone-center optical phonons detected

Dispersion of vibrations in a solid

Dispersion of light

Budapesti Műszaki és Gazdaságtudományi Egyetem

Álmosdi Péter, BME 2008 Source: Wikipedia

Experimental setup

Excitation: visible, monochromatic light (laser) ~ 10⁴ cm⁻¹ **Frequency difference:** infrared region, resolution: ~ 1 cm⁻¹ **Resolution of monochromator critical!**

Experimental arrangements

3.4a. ábra. A 90°-os gerjesztési elrendezésû mintatér.

Mink János: Az infravörös és Raman spektroszkópia alapjai. Veszprémi Egyetem Analitikai Kémiai Tanszék

Raman microscope

3.11. Diódasoros detektorral működő Raman mikroszkóp.

Budapesti Műszaki és Gazdaságtudományi Egyetem Optic

Raman spectrum of CCI₄

(a) Raman eltolódás (cm⁻¹)

(b) Abszolút hullámszám skála (cm⁻¹)

(c) Hullámhossz skála (nm)

a) Raman shift (cm⁻¹)
b) Absolute wavenumbers (cm⁻¹)
c) Wavelength (nm)

Mink János: Az infravörös és Raman spektroszkópia alapjai. Veszprémi Egyetem Analitikai Kémiai Tanszék

The Raman effect

Stokes scattering:

Veres Miklós, MTA Wigner FK

Resonant Raman scattering

If the energy of the exciting laser approaches the energy of a real transition in the medium, the intensity of the Raman scattering increases by orders of magnitude. This is the **resonant Raman effect.**

Resonant Raman scattering is the strongest close to maxima in the density of states.

Resonant Raman excitation profile

Excitation profile: example

anti-Stokes Stokes 1000 SOGI 02 Intensity (arb. units) 500 0 1 2 500 250 0 4 1.60 1.75 1.60 1.65 1.70 1.65 1.70 1.75 E, (eV) E, (eV)

Veres Miklós, MTA Wigner FK

Excitation profile of the 173,6 cm⁻¹ mode

Budapesti Műszaki és Gazdaságtudományi Egyetem Optical spectroscopy in materials science 3.

Raman spectra of carbon nanotubes

Budapesti Műszaki és Gazdaságtudományi Egyetem Optical spectroscopy in materials science 3.

Radial breathing mode (RBM)

- Does not exist in graphite and other forms of carbon, typical of nanotubes
- Diameter dependence: decreasing with increasing diameter (decreasing curvature)
- Approximately proportional to 1/d

Diameter dependence of RBM frequency

Theoretical Kataura plot

\approx 1/d dependence

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba: **Synthetic Metals 103**, 2555 (1999)

Individual nanotubes: Raman spectrum

AFM images, sample localization

Choice of laser for eliminating fluorescence

If the excited state exhibits fluorescence, that can suppress the Raman lines. In this case one has to find the ideal laser.

Budapesti Műszaki és Gazdaságtudományi Egyetem

Qualitative analysis

IR

Raman

Take-home message

- Raman scattering: two-photon process (exciting photon virtual excited state photon emission)
- measurement: with visible/NIR laser
- Raman shift is the difference of emitted and absorbed photon frequency, resolution depends on monochromator efficiency
- resonance Raman scattering: exciting light frequency matches a real excitation in the system
- qualitative analysis as with IR, quantitative is hindered by scattering into the whole space and by resonance effects
- IR and Raman activity: symmetry analysis – selection rules – principle of mutual exclusion

Összefoglalás

- Raman-szórás: kétfotonos folyamat (gerjesző foton elnyelése virtuális gerjesztett állapot – fotonkibocsátás)
- gerjesztés látható/NIR lézerrel
- a Raman-eltolódás a kibocsátott és elnyelt foton frekvenciakülönbsége, a felbontást a monokromátor felbontása határozza meg
- rezonáns Raman-szórás: a gerjesztő fény frekvenciája megfelel a rendszer egy valódi gerjesztésének
- kvalitatív analízis mint az infravörösben, kvantitatív meghatározást akadályozza a teljes térbe kibocsátott szórt fény és a rezonancia-effektusok