Optical spectroscopy in materials science 2.

Infrared spectroscopy

Kamarás Katalin MTA Wigner FK kamaras.katalin@wigner.mta.hu

Budapesti Műszaki és Gazdaságtudományi Egyetem

Optical spectroscopy in materials science 2.

1

Experimental arrangements

Damped harmonic oscillator

electron of charge -e, mass m, in the field of a nucleus of infinite mass

$$\frac{md^2\mathbf{r}}{dt^2} + m\gamma \frac{d\mathbf{r}}{dt} + m\omega_0^2\mathbf{r} = -e\mathbf{E}$$

Look for **r** in the form $\mathbf{r}_0 e^{-i\omega t}$; using

$$\frac{d\mathbf{r}}{dt} = -i\omega\mathbf{r}, \frac{d^2\mathbf{r}}{dt^2} = -\omega^2\mathbf{r}$$

$$\mathbf{r} = \frac{-e\mathbf{E}/m}{\omega_0^2 - \omega^2 - i\gamma\omega} \qquad \mathbf{P} = \frac{1}{V}Ne\mathbf{r} = \frac{e^2N}{mV}\frac{\mathbf{E}}{\omega_0^2 - \omega^2 - i\gamma\omega} = \chi\varepsilon_0\mathbf{E}$$

Frequency dependence of optical functions

Budapesti Műszaki és Gazdaságtudományi Egyetem

Optical spectroscopy in materials science 2.

Real dielectric function

condition: $\gamma \ll \omega_0$ atomic transitions: $\omega_0 \sim 10^4 \text{ cm}^{-1}$, $\gamma \sim 10^{-4} \text{ cm}^{-1}$

Budapesti Műszaki és Gazdaságtudományi Egyetem

$$\varepsilon_{rel}' = n'^{2} - n''^{2} = 1 + \frac{Ne^{2}}{\varepsilon_{0}m_{e}V} \frac{\omega_{0}^{2} - \omega^{2}}{(\omega_{0}^{2} - \omega^{2})^{2} + \gamma^{2}\omega^{2}}$$

$$\varepsilon_{rel}$$
' = 1, if $\omega = \omega_0$ or $\omega >> \omega_0$

normal dispersion: ϵ ' increasing with ω anomalous dispersion: ϵ ' decreasing with ω

Limits of anomalous dispersion region:

$$\frac{\partial \varepsilon_{rel}}{\partial \omega} = 0 \qquad \frac{f(\omega)}{\left[\left(\omega_0^2 - \omega^2\right)^2 + \gamma^2 \omega^2\right]^2} = 0 \implies \omega_0^2 - \omega_m^2 = \pm \gamma \omega_0$$

$$(\omega_0 + \omega_m)(\omega_0 - \omega_m) = \pm \gamma \omega_0$$
 (condition) $2\omega_0(\omega_0 - \omega_m) = \pm \gamma \omega_0$ $\omega_m \cong \omega_0 \pm \frac{\gamma}{2}$

Imaginary dielectric function

$$\varepsilon_{rel}'' = 2n'n'' = \frac{Ne^2}{\varepsilon_0 m_e V} \frac{\gamma \omega}{(\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2}$$

full width at half maximum:

$$\varepsilon_{rel}"(\omega_f) = \frac{\varepsilon_{rel}"(\omega_0)}{2} = \frac{Ne^2}{\varepsilon_0 m_e V} \frac{1}{2\gamma\omega_0} = \frac{Ne^2}{\varepsilon_0 m_e V} \frac{\gamma\omega_f}{(\omega_0^2 - \omega_f^2)^2 + \gamma^2 \omega_f^2}$$

condition $\omega_0 \cong \omega_f$

$$\omega_f = \omega_0 \pm \frac{\gamma}{2}$$

 $\varepsilon_{rel}'' = \frac{n' \alpha c}{\omega} = \frac{\sigma'}{\omega \varepsilon_0}$ $\varepsilon_{rel}'' \text{ can be determined from absorption if } n' << n''$

Budapesti Műszaki és Gazdaságtudományi Egyetem

Semiconductors and metals – collective electron system

Harmonic oscillator: here it is an electron of the delocalized electron system, oscillating in the electric field of the atomic cores

$$\varepsilon_{rel} = 1 + \frac{e^2}{\varepsilon_0 m_e V} \sum_i \frac{N_i}{\omega_i^2 - \omega^2 - i\gamma_i \omega} \qquad \omega_i = \frac{|E_i - E_0|}{\hbar}$$

E_{i,j} energy of bands

 $\omega_i \sim \gamma$, shape of functions can be relevant **Measurement technique:** reflectance (large absorption in bulk)

$$R = \frac{I_{sample}}{I_{mirror}} R_{mirror} \quad R = \frac{I_R}{I_0} = \frac{(n'-1)^2 + n''^2}{(n'+1)^2 + n''^2}$$

Reflectance curve around an excitation

I. **Transparent region** (T): $\omega < \omega_i, \epsilon^* = 0, \epsilon_{rel}' > 0$ absorption small (in semiconductors, below absorption edge) R from dispersion, can be large for semiconductors (Si) (static polarization)

II. Absorbing region (A): $\omega \sim \omega_i$, ϵ ', ϵ '', n', n", R large anomalous dispersion ideal region for reflectance measurements

III. **Reflecting region** (R): $\omega > \omega_i$ R large metallic luster semiconductors: electrons in conduction band

IV. **Transparent region** (T): ε ''= 0, ε_{rel} ' small limit: plasma frequency (ω_p) ε ' = ε '' = 0

Metals

Drude model:

damped harmonic oscillator without restoring force $(\omega_0=0)$

$$\varepsilon'_{r} = 1 - \frac{Ne^{2}}{\varepsilon_{0}mV} \frac{1}{\omega^{2} + \gamma^{2}} \qquad \varepsilon''_{r} = \frac{Ne^{2}}{\varepsilon_{0}mV} \frac{\gamma}{\omega(\omega^{2} + \gamma^{2})}$$

 $\gamma = \tau^{-1} (\tau \text{ relaxation time} - \text{transport}) l = v_F \tau$

Optical conductivity:

$$\sigma' = \omega \varepsilon_r'' \varepsilon_0 = \frac{Ne^2}{mV} \frac{\gamma}{\omega^2 + \gamma^2}$$

dc conductivity:

Full width at half maximum:

 $\sigma'(\omega_x) = \frac{Ne^2}{2mV\gamma} = \frac{Ne^2}{2mV} \frac{\gamma}{\omega_x^2 + \gamma^2} \longrightarrow 2\gamma^2 = \omega_x^2 + \gamma^2 \longrightarrow \omega_x = \gamma = \tau^{-1}$

Frequency (cm⁻¹)

9

Plasma frequency in metals

$$\varepsilon'(\omega_p) = 0$$

$$\varepsilon_{rel}' = 1 - \frac{Ne^2}{\varepsilon_0 m_e V} \frac{1}{\omega_p^2 + \gamma^2} = 0$$

$$\frac{Ne^2}{\varepsilon_0 m_e V} = \omega_p^2 + \gamma^2$$

Neglecting γ^2 : $\frac{Ne^2}{\varepsilon_0 m_e V} \cong \omega_p^2$

$$\omega_p \gg \gamma$$

effectance around ω_p (plasma edge)

$$\begin{array}{c}
100 \\
x & 3.5 \times 10^{17} \\
\circ & 6.2 \times 10^{17} \\
\circ & 1.2 \times 10^{18} \\
& 2.8 \times 10^{18} \\
-x - 4.0 \times 10^{18} \\
& 1nSb:n-type \\
0 \\
0 \\
5 \\
15 \\
25 \\
35 \\
\lambda(\mu m)
\end{array}$$

. ..

for n-type InSb samples with different numbers of free electrons. [From W. G. Spitzer and H. Y. Fan, Phys. Rev. 106, 882 (1957).] See the comment about the ε_{∞} effect in Section 13-3 and the caption of Fig. 13-5.

Fig. 13-13 Reflectivity spectra

Reflectance around ω_{p} (plasma edge):

Budapesti Műszaki és Gazdaságtudományi Egyetem

$$\varepsilon_{rel}' = 0, \varepsilon_{rel}'' = 0 \rightarrow R = 1$$

$$\varepsilon_{rel}' = 1, \varepsilon_{rel}'' = 0 \rightarrow R = 0$$

 $R = \frac{I_R}{I_0} = \frac{(n'-1)^2 + n''^2}{(n'+1)^2 + n''^2}$

The plasma edge shifts with charge carrier concentration

Generalized plasma frequency

$$\omega_p^2 = \frac{Ne^2}{\varepsilon_0 m_e V}$$
 for any excitation ω_0

mass can be effective mass m_{eff} ; N/V charge density involved in excitation

$$\varepsilon_{rel} = 1 + \frac{\omega_p^2}{\omega_0^2 - \omega^2 - i\gamma\omega}$$

Frequency of plasma minimum:

$$\varepsilon_{rel}'(\omega_m) = 1 + \omega_p^2 \frac{\omega_0^2 - \omega_m^2}{(\omega_0^2 - \omega_m^2)^2 + \gamma^2 \omega_m^2} = 0$$

$$\omega_p^2(\omega_m^2 - \omega_0^2) = (\omega_m^2 - \omega_0^2)^2 + \gamma^2 \omega_m^2$$

Neglecting $\gamma^2 \omega_m^2 = \omega_p \gg \omega_0 \gg \gamma$

$$\omega_m^2 = \omega_0^2 + \omega_p^2$$

Description of multiple excitations

Drude-Lorentz dielectric function:

$$\varepsilon_{rel} = 1 + \frac{e^2}{\varepsilon_0 mV} \sum_i N_i \frac{1}{\omega_i^2 - \omega^2 - i\gamma_i \omega} = 1 + \sum_i \frac{\omega_{pi}^2}{\omega_i^2 - \omega^2 - i\gamma_i \omega}$$
Static dielectric constant:
$$\varepsilon_{rel}'(0) = 1 + \sum_i \frac{N_i e^2}{\varepsilon_0 mV} \frac{1}{\omega_i^2} = 1 + \sum_i \frac{\omega_{pi}^2}{\omega_i^2}$$

If individual excitations are well separated, ω_i (*i*>*n*) >> ω_n

$$\varepsilon_{rel} = \sum_{i>n} \frac{\omega_{pi}^2}{\omega_i^2} + \sum_i \frac{\omega_{pi}^2}{\omega_i^2 - \omega^2 - i\gamma_i\omega} = \varepsilon_{\infty} + \sum_i \frac{\omega_{pi}^2}{\omega_i^2 - \omega^2 - i\gamma_i\omega}$$

Budapesti Műszaki és Gazdaságtudományi Egyetem

Multiple excitations – dielectric function

13

Shift of metallic plasma edge

$$\varepsilon_{rel}' = \varepsilon_{\infty} - \frac{\omega_p^2}{\omega_{pm}^2 + \gamma^2} = 0$$

$$\varepsilon_{\infty}(\omega_{pm}^2+\gamma^2)=\omega_p^2$$

because
$$\omega_{pm} >> \gamma$$
, $\omega_{pm} = \frac{\omega_p}{\sqrt{\mathcal{E}_{\infty}}}$

 $\omega_{\text{pm}}\!\!:$ screened plasma frequency

$$\omega > \omega_{pm}$$
: $\varepsilon_{rel}' = \varepsilon_{\infty}$ $\varepsilon_r'' = 0$

$$R = \frac{\left(\sqrt{\varepsilon_{\infty}} - 1\right)^2}{\left(\sqrt{\varepsilon_{\infty}} + 1\right)^2}$$

Plasma oscillations

+++++++

The oscillations persist in zero external field: $E_{ext} = D = \epsilon E = 0$

since $E \neq 0$ (charge separation), $\varepsilon = 0$ (ε ' = ε '' = 0)

Plasma oscillations occur at the frequency where the condition is met, but we do **not** excite the plasma oscillations with light at normal incidence!

(Bulk) plasmons

Plasmons:

longitudinal oscillations of the electron gas cannot be excited by normal incidence light

they appear if $\varepsilon' = \varepsilon'' = 0$

Detection of plasmons: electron energy loss spectroscopy (EELS)

EELS measures the loss function:

$$\operatorname{Im}(-\frac{1}{\widetilde{\varepsilon}})$$

T. Pichler, M.Knupfer, M.S. Golden, J. Fink, A.G. Rinzler, R.E. Smalley: Phys. Rev. Lett. **80**, 4729 (1998)

FIG. 3. The real and imaginary parts of the dielectric function (upper panels) and the real part of the optical conductivity (σ_r) at low momentum transfer: SWNTs (-) at q = 0.1 Å⁻¹, C₆₀ (- · -) and graphite [polarized in plane (· · ·)] at q = 0.15 Å⁻¹, respectively. The inset shows σ_r for the four lowest-lying interband transitions of SWNTs in an expanded range.

Optical and EELS spectra

$$\omega_{LO}^2 = \omega_{TO}^2 + \frac{\omega_p^2}{\varepsilon_{\infty}}$$

Maximum of the loss function $\operatorname{Im}(-\frac{1}{\widetilde{\varepsilon}})$ is at higher frequency than the absorption maximum

X. Liu, T. Pichler, M. Knupfer, M.S. Golden, J. Fink, H. Kataura, Y. Achiba: **Phys. Rev. B 66**, 045411 (2002)

FIG. 4. (a) Loss function in the region of the low-energy interband transitions for SWCNT's with different mean diameters recorded with q = 0.1 Å⁻¹. (b) Optical absorption spectra (after background subtraction) from SWCNT with mean diameters as indicated.

Molecular vibrations

Mechanical model of a vibrating diatomic molecule

Vibrational spectra

 $m_r = \frac{m_+ m_-}{m_+ + m_-}$ reduced mass

 $r = (u_{+} - u_{-})$ relative displacement

Introducing damping:

$$m_r \frac{d^2 r}{dt^2} + m_r \gamma \frac{dr}{dt} + m_r \omega_0^2 r = qE$$

 $\mu = qu_{\perp} - qu_{\perp}$

*m_
$$m_+ \frac{d^2 u}{dt^2} = -\kappa (u_+ - u_-) + qE$$

***m**₊
$$m_{-}\frac{d^{2}u}{dt^{2}} = -\kappa(u_{-}-u_{+}) - qE$$

 $\omega_0 = \sqrt{\frac{\kappa}{m_r}}$ eigenfrequency 38. old. sajtóhiba!

$$E = E_0 e^{-i\omega t} \longrightarrow r = r_0 e^{-i\omega t}$$

For a system of volume V, containing N molecules:

$$\frac{m_{+}m_{-}}{m_{+}+m_{-}}\frac{d^{2}(u_{+}-u_{-})}{dt^{2}} = qE + \kappa(u_{-}-u_{+})$$

$$\mu = \alpha E \rightarrow \chi = \frac{\alpha N}{V} \rightarrow \varepsilon_{rel} = 1 + \chi$$
4.5., 4.6. egyenlet: sajtóhiba! (m_{+}, m_{-} felcserélve) $\varepsilon_{rel} = 1 + \frac{Nq^{2}}{\varepsilon_{0}m_{r}V} \frac{1}{\omega_{0}^{2} - \omega^{2} - i\gamma\omega}$

Budapesti Műszaki és Gazdaságtudományi Egyetem Optical spectroscopy in materials science 2.

Vibrational spectra – dielectric formalism

For extended charge distribution, an *effective charge* can be defined:

$$\mu = \left(\frac{\partial \mu}{\partial u_{+}}\right)u_{+} + \left(\frac{\partial \mu}{\partial u_{-}}\right)u_{-} = Qr \qquad Q = \left(\frac{\partial \mu}{\partial u_{+}}\right) = -\left(\frac{\partial \mu}{\partial u_{-}}\right)$$

$$\varepsilon_{rel} = \varepsilon_{\infty} + \frac{NQ^2}{\varepsilon_0 m_r V} \frac{1}{\omega_0^2 - \omega^2 - i\gamma\omega} = \varepsilon_{\infty} + \frac{\Omega^2}{\omega_0^2 - \omega^2 - i\gamma\omega}$$

$$\Omega^2 = \frac{NQ^2}{\varepsilon_0 m_r V}$$
 oscillator strength (if Q=0, no response)

 $m_{r} >> m_{e}$ and $Q < e \rightarrow$ usually weaker transitions

Longitudinal excitation if
$$\varepsilon_{rel}(\omega_l) = 0$$
: $\varepsilon_{rel}' = \varepsilon_{\infty} + \frac{\Omega^2(\omega_0^2 - \omega_l^2)}{(\omega_0^2 - \omega_l^2)^2 + \gamma^2 \omega_l^2} = 0$
since $\gamma << \omega_{0'}\omega_l$ $\omega_l^2 = \omega_0^2 + \frac{\Omega^2}{\varepsilon_{\infty}}$
 $\omega_l - \omega_0$: LO-TO splitting (intensity!) $\omega_l = \omega_{LO}$ longitudi
 $\omega_l = \omega_{LO}$ transver

 $\omega_{l} = \omega_{LO}$ longitudinal optical frequency $\omega_{0} = \omega_{TO}$ transverse optical frequency

Optical spectroscopy in materials science 2.

Reststrahlen

"Reststrahlen" (residual rays) – frequency filter

"Reststrahlen" region n'<1

Static dielectric constant

 $\varepsilon_{rel}'(0) = \varepsilon_{\infty} + \frac{\Omega^2}{\omega_0^2}$ (one vibrational transition + electronic excitations)

$$\frac{\varepsilon_{rel}'(0)}{\varepsilon_{\infty}} = \frac{\omega_l^2}{\omega_0^2} = \frac{\omega_{LO}^2}{\omega_{TO}^2}$$

Lyddane-Sachs-Teller relation

For multiple oscillators:

$$\frac{\varepsilon_{rel}'(0)}{\varepsilon_{\infty}} = \prod_{i} \frac{\omega_{li}^2}{\omega_{0i}^2}$$

Application:

- is there a vibration below a given frequency? (comparison with dielectric constant)
- Estimation of high-frequency dielectric constant from vibrational spectra and static dielectric constant

Molecular spectra

Wavenumber (cm⁻¹)

 $\alpha = \frac{2\omega n''}{c} = \frac{\varepsilon_{rel}^{"}\omega}{n'c}$

Fourier-transformation infrared (FTIR) spectroscopy

$$I(v^*) = \int_{-\infty}^{+\infty} I(x) \cos(2\pi v^* x) dx$$

$$i(v^*) = \Delta x \sum_{-M}^{M} I(m\Delta x) \cos(2\pi v^* m\Delta x)$$

Why FTIR?

high temperature: intensity grows also at high frequency (short wavelength)

environmental thermal radiation cannot be filtered out

FTIR: only light getting into the interferometer will be modulated

FTIR advantages

Dispersive IR spectrometer

Jacquinot's advantage: intensity no need for narrow slit, as in monochromators shape of illuminating light spot not critical (detector: large dynamic range!)

Fellgett's advantage (multiplex):

multiple frequencies in one scan (in dispersive systems, scan time is determined by the frequency range with the smallest intensity) signal-to-noise ratio improves with more scans time resolution possible on the scale of a few seconds

Interferogram of a monochromatic source

Monochromatic source

Interferogram of a polychromatic source

Budapesti Műszaki és Gazdaságtudományi Egyetem

Interferogram of a continous source

Converting interferograms to spectra

P.R. Griffiths, J.A. de Haseth: Fourier Transform Infrared Spectrometry Wiley, 2007

RETARDATION -(6)

Resolution

Fig. 1.4. (a) Spectrum of two lines of equal intensity at wavenumbers $\overline{\nu}_1$ (solid line) and $\overline{\nu}_2$ (broken line) separated by $0.1\overline{\nu}_1$. (b) Interferogram for each spectral line shown individually as solid and broken lines, respectively. (c) Resultant interferogram with the first maximum of the beat signal at $10/\overline{\nu}_1$; to resolve these two spectral lines, it is necessary to generate an optical retardation of at least this value.

Budapesti Műszaki és Gazdaságtudományi Egyetem

$$10\lambda_{1} = 9\lambda_{2}$$

$$\nu_{2}^{*} = 0.9\nu_{1}^{*}$$

$$\Delta\nu^{*} = 0.1\nu_{1}^{*}$$

$$x_{\min} = 10\lambda_{1} = \frac{1}{\Delta\nu^{*}}$$

P.R. Griffiths, J.A. de Haseth: Fourier Transform Infrared Spectrometry Wiley, 2007

 $\Delta v^* = 1cm^{-1} \rightarrow x = 1cm$ $\Delta v^* = 0.01cm^{-1} \rightarrow x = 1m$

Frequency range

Nyquist's theorem: a specific frequency should be distinguished from the harmonics by using appropriate sampling frequency **Example:**

$$v_{\max}^* = \frac{1}{2\Delta x}$$

$$v_{\rm max} = 1000 cm^{-1} \rightarrow \Delta x = 5 \mu m$$

Budapesti Műszaki és Gazdaságtudományi Egyetem

Sampling control: He-Ne laser

Budapesti Műszaki és Gazdaságtudományi Egyetem

Typical parameters

Mirror velocity: 0.5-60 mm/sec He-Ne laser wavelength: 632.8 nm, wavenumber 15800 cm⁻¹ minimal distance of zero points: 316.4 nm n_{max} =15800 cm⁻¹ 632.8 nm n_{max} = 7900 cm⁻¹

frequency of signal at detector: f=2vn* for f=1.58 mm/sec 400 cm⁻¹ f=126 Hz 4000 cm⁻¹ f=1260 Hz

Signal evaluation

Interferogram Fourier transformation:

Apodization Phase correction Zerofilling

$$i(v^*) = \Delta x \sum_{-M}^{M} I(m\Delta x) \cos(2\pi v^* m\Delta x)$$
 finite, discrete FT

Apodization

Instrumental lineshape:

Fourier transform of the boxcar cutoff, known as the sinc function. Largest side lobe is 22 % of the main lobe amplitude. L = Optical Pathlength Difference.

Apodization (French for "cutting the feet off": convolution with other functions

apodization functions (left) and the Several 'Instrumental Lineshape' produced by them (right). The cases A - D are commonly used in FT-IR.

Budapesti Műszaki és Gazdaságtudományi Egyetem

Phase correction

Fig. 1.16. Weighting functions employed for single-sided interferograms measured from $-\Delta_1$ (a short distance to the left of the centerburst) to $+\Delta_2$ (the full distance to the right of the centerburst needed to achieve the desired resolution) (a) for boxcar truncation: (b) for triangular apodization.

Interferogram contains sin(x) contributions Complex Fourier transformation Determination of phase at chosen frequencies (real resolution decreases)

Budapesti Műszaki és Gazdaságtudományi Egyetem

Zerofilling

Adding zeroes to end of interferogram "Spectrum-like" interpolation Does not replace resolution!

FTIR spectrometer

Budapesti Műszaki és Gazdaságtudományi Egyetem

FTIR measurement

Budapesti Műszaki és Gazdaságtudományi Egyetem

Reference spectrum

Sample spectrum

Budapesti Műszaki és Gazdaságtudományi Egyetem

Transmission spectrum

Vibrations and spectra

Vibrations need a well-defined energy

Frequency: $\omega_0 = \sqrt{\frac{\kappa}{m_r}}$

κ bond strength (spring constant)
 m_r reduced mass
 Number of lines: symmetry
 complicated structure

Qualitative analysis

Group frequencies

Alkane	3,000 2,800		1,480 1,340		720	
Olefine	3,100 3,000		1,680 1,640	1	,000	650
Phenylderivative	3,100 3,000		1,600	1,450	900	650
X≡Y and X=Y=Z	3,300	2,300	2,000			
Halogen compound			1,4	00		480
Alcohol and Phenol	3,650	2,400		1,230	1,000	
Ether				1,270	800	
Amine	3,550 3,310		1,650 1,5	50		
Nitro compound			1,590 <mark>1</mark> 1 1,3	,500 390 <mark>-</mark> 1,330		
Ketone			1,780 1,660			
Aldehyde	2,900	2,680	1,740 1,660			
Carboxylic Acid	3,580	2,500	1,800 1,680			
Carboxylate			1,650 1,55	50		
Anhydride			1,870 1,800 1,810 1,740	Б	ruk	er
Ester			1,745 1,735	1,300	1,000	
Lactone			1,840 1,715			
Amide	3,550 3,10	00	1,690 1,600 1,570 1,	510		
	1.000 3,500 3.000	0 2,500 2.0	000 1,800 1,600	1.400 1,200	1.000 800	600 400
	Wave Number [cm ⁻¹]					

Typical infrared and Raman spectrum

B. Schrader: Raman/Infrared Atlas of Organic Compounds. VCH Publishers, 1989.

Budapesti Műszaki és Gazdaságtudományi Egyetem

Absorption spectroscopy

if R<<1,
$$T = \frac{I_T}{I_0} = e^{-\alpha d}$$
 $A \cong -\log T = \alpha d = \varepsilon cd$ Beer's law log, ln?

 $[\alpha] = cm^{-1}$ $[\varepsilon] = 1/cm/konc.$ specific (molar) absorption coefficient

Concentration can be determined: known coefficient calibration

Budapesti Műszaki és Gazdaságtudományi Egyetem

Instruments

FIR/MIR

MIR/NIR

Near field/SNOM

Take-home message

- vibrational spectra: vibrations of atoms, damped harmonic oscillator with reduced mass $m_r = \frac{m_+ m_-}{m_+ + m_-}$ and relative displacement $r = (u_+ - u_-)$
- eigenfrequency of oscillator $\omega_0 = \sqrt{\frac{\kappa}{m}}$ κ interatomic interaction strength
- ٠
- ionic crystals: Reststrahlen region with high reflectivity around ω_0 longitudinal excitation if $\varepsilon_{rel}(\omega_l) = 0$, $\omega_l^2 = \omega_0^2 + \frac{\Omega^2}{\varepsilon_{\infty}}$, LO-TO splitting measure of intensity ٠
- FTIR spectroscopy: Michelson interferometer, $I(v^*) = \int_{-\infty}^{+\infty} I(x) \cos(2\pi v^* x) dx$
- throughput and multiplex advantage •
- interferogram of monochromatic source: cosine function, of continuous source: peaked ٠
- FTIR spectrometer: source beamsplitter sample detector •
- measurement: interferogram \rightarrow single-beam spectrum \rightarrow transmission spectrum •
- resolution depends on mirror pathlength, frequency range on sampling interval ٠
- signal evaluation from interferogram: apodization, phase correction, zerofilling •
- infrared spectral analysis: qualitative (group frequencies), quantitative (Beer's law) ٠

Osszefoglalás

- rezgési spektrumok: atomok rezgései, csillapított harmonikus oszcillátor, redukált tömeg $m_r = \frac{m_+ m_-}{m_+ + m_-}$, relatív elmozdulás $r = (u_+ - u_-)$ sajátfrekvencia $\omega_0 = \sqrt{\frac{\kappa}{m_+}}$ κ az atomok közti kölcsönhatás erőssége
- ionos kristályok: Reststrahlen tartomány ω_0 körül nagy reflexió
- longitudinális gerjesztés $\varepsilon_{rel}(\omega_l) = 0$, $\omega_l^2 = \omega_0^2 + \frac{\Omega^2}{c}$, LO-TO felhasadás intenzitást mér
- FTIR spektroszkópia: Michelson interferométer, $I(v^*) = \int_{-\infty}^{+\infty} I(x) \cos(2\pi v^* x) dx$
- átbocsátás és multiplex előny
- monokromatikus forrás interferogramja: cosinusfüggvény, folytonos forrásé: egy csúcs ٠
- FTIR spektrométer: forrás nyalábosztó mintatér detektor •
- mérés: interferogram \rightarrow egysugaras spektrum \rightarrow transzmissziós spektrum •
- a felbontást a tükörúthossz, a frekvenciatartományt a mintavétel gyakorisága • határozza meg
- jelfeldolgozás: interferogram apodizáció fáziskorrekció zerofilling
- infravörös analízis: kvalitatív (csoportfrekvenciák), kvantitatív (Lambert Beer törvény)