Röntgenspektroszkópiák az anyagszerkezet-kutatásban

Bajnóczi Éva és Németh Zoltán MTA Wigner FK nemeth.z@wigner.mta.hu

1) általános bevezető, módszerek csoportosítása, eszközök

- 2) legfontosabb röntgenabszorpciós technikák
- 3) specifikusabb módszerek: XES, RXES, XMCD

Röntgenspektroszkópiák az anyagszerkezet-kutatásban

Bajnóczi Éva és Németh Zoltán MTA Wigner FK nemeth.z@wigner.mta.hu

1) általános bevezető, módszerek csoportosítása, eszközök

2) legfontosabb röntgenabszorpciós technikák

3) specifikusabb módszerek: XES, RXES, XMCD

X-ray emission spectroscopy (XES)

1s XES spinállapot-függése

1s3p XES spinállapot-függése

G. Vankó, F. de Groot, Phys. Rev. B 75 (2007) 177101.

spinállapot meghatározása

vonalszélességekből

IAD módszer: integrált abszolút különbségek

a Föld szerkezete

kapcsolható molekulák

optikai pumpa - XES szonda mérés szinkrotronnál

optikai pumpa - XES szonda mérés XFEL-nél

1s XES spinállapot-függése

vegyértékemissziós (aka vtc, valance-to-core) XES

) Prezi

vtc XES vs. XPS

vegyérték XPS:

O 2s, 2p, Fe 3d

vegyérték-XES:

O 2s, O 2p

- azonos végállapotok
- XES-nél dipólus kiválasztási szabályok
- XES tömbi információt ad

 Fe_2O_3

rezonáns röntgenemissziós spektroszkópia (RXES)

lágyröntgen mágneses cirkuláris dikroizmus (XMCD)

1s2p RXES - MCD

M. Sikora et al. Physical Review Letters 105, 037202 (2010).

Röntgenabszorpció

Bajnóczi Éva 2016. november 23.

A jelenség felfedezése, rövidítések

1895 Wilhelm Conrad Röntgen - felfedezi a röntgensugárzást 1913 Maurice De Broglie - első abszorpciós él mérés 1920 Hugo Fricke – az abszorpciós él közeli energiafüggő változások első megfigyelése

...

1970 Stern, Sayers és Lytle - a röntgenabszorpció elméleti alapjainak lerakása

Az abszorpció jelensége

A finomszerkezet kialakulása I.

Egyszeres és többszörös szóródás

5

A finomszerkezet kialakulása II.

7

XANES régió

s – d átmenet dipól tiltott szabályos oktaéderes környezetben, DE részben megengedetté válik a torzulások, és az inverziós centrum megszűnése miatt (p és d pályák hibridizációja)

Különböző oxidációs állapotok

4p járulék keveredése különböző geometriák esetén

Ligandum K-él abszirpció

Cu: $3d^9 \iff Zn: 3d^{10}$

Az EXAFS egyenlet

- *R_i* az abszorber atom és a szóró atomok távolsága (MS esetén a teljes távolság fele)
- *N_i* szóró atomok száma az *i*-edik koordinációs szférában (koordinációs szám)
- *F* szórási amplitúdó függ a kémiai környezettől, *ab initio* számolható
 → pl. FEFF programcsomag

Az EXAFS egyenlet

- $\frac{N_i F_i(k)}{kR_i^2} \frac{S_0^2}{e^{-2R_i}} e^{-2\sigma_i^2 k^2}$ szórási erősség csillapítás rendezetlenség nplitúdó redukciós tényező – inelasztikus veszteség az
- S_{0^2} amplitúdó redukciós tényező inelasztikus veszteség az abszorberen belül, értéke általában 0.7 1.1 között
- λ a fotoelektron közepes szabad úthossza annak a valószínősége, hogy a fotoelektron "visszatér" az abszorberre anélkül, hogy inelasztikus szóródást szenvedne a szóró atom elektronjain, vagy betöltődne az lyuk
- φ fáziskülönbség amelynek oka a fotoelektron és a coulomb potenciálok közötti kölcsönhatás, amely *k*-függő

```
13
```

Az EXAFS egyenlet

σ^2 rendezetlenség – Debye-Waller faktor

Dinamikus $\sigma_{vlbr}^2 = \left[\frac{h}{8\pi^2 m_r \nu}\right] \operatorname{coth}[h\nu/2k_r]$

 $\sigma_{conf}^2 = \sum_{i=1}^{N} \frac{(R_j - R_0)^2}{N}$

Statikus

14

Hogyan lesz mindebből szerkezet?

1. Normalizáció

15

Hogyan lesz mindebből szerkezet?

2. $\mu(E)_{norm} \rightarrow \mu(k)_{norm}$ transzformáció

Hogyan lesz mindebből szerkezet?

3. $\mu_0(k)$ "atomi" háttér kivonása

Hogyan lesz mindebből szerkezet?

4. Súlyozás k-val

Hogyan lesz mindebből szerkezet?

5. Fourier transzformáció

Table 1	Results from EXAFS curve-fitting of fourier-filtered contributions of the Cu-doped hydrotalcite ^{a,b}
---------	--

contribution	functions j	N_{j}	$R_j/Å$	$\sigma_j^2/{ m \AA}^2$	$\Delta E_{ m o}/{ m eV}$	R	
Cu-O (two-shell fit)	1st O 2nd O	4.8 1.6	1.99 2.25	0.006 0.003	5.4	0.11	Köckerli
Cu···Al (one-shell fit)	Al	4.3	3.05	0.006	6.0	0.22	Geismai
Cu···Mg (one-shell fit)	Mg	4.3	3.07	0.006	3.5	0.26	Henkel Nolting,
Cu-O+	1st O	4.6	1.98	0.005	5.3		Chem. S
Cu···Al/Mg (three-shell fit)	2nd O 3rd Al	2.8 4.6	2.24 3.05	0.009 0.007	5.3 4.0	0.10	Faraday 1997/93(

Mérési elrendezés, detektálási módok I.

Mérési elrendezés, detektálási módok II.

Total Electron Yield $\mu = I_{TEY}/I_0$

alacsony energiák, könnyű elemek, felszín (~ 10 nm), leginkább fémes minták esetén alkalmazható

Auger Emission $\mu = I_{Aug}/I_0$

alacsony energiák, könnyű elemek, felszín (~ 10 nm)

21

Diszperzív XAFS

- Polikromatikus sugárzás → a teljes spektrum egyszerre rögzíthető, nagyon *rövid idő* alatt (akár < 1µs)
- · A mintapozícióban fókuszált, stabil nyaláb, mivel nincsenek mozgó alkatrészek
- Jól kapcsolható más technikákkal (UV-vis, IR, MS) ٠
- Kémiai reakciók vizsgálata → Katalízis ٠

Diszperzív XAFS

- - control using X-ray absorption fine structure, Catal. Today, 145, 279–287. Nagai, Y. et al. (2007) Real-time observation of platinum redispersion on ceria-pased oxide by in-situ Turbo-XAS in fluorescence mode, AIP Conf. Proc., 882, 594–596.

23

RIA for supported oples of Pt foil a lysts after 800 der. The XAFS

Laboratóriumi XANES

<u>Nagyfelbontású Hámos-féle</u> <u>röntgenspektrométer</u> laboratóriumi röntgencsővel:

- forrás: 2200 W Seifert DX-Cu 12x0.4-s vízhűtéses röntgencső
 - 1.2×0.4 mm² pontforrás (fókuszáló és diszperzív irányok)
 - 1.5×10⁹ foton/(s×mm²) a 300 eV széles Ni K-él spektrum tartományában a mintán
- monokromátor (analizátor): 100 db 50×1mm² 300 μm vékony Si(111) lapka, 250 mm sugarú hengerpalást alakú hordozó belsején
- detektor:
 - Dectris Mythen 1K detektor 1280 db 50 μm×8 mm pixellel

Hámos-féle spektrométer működési elve

A: Si(111) reflexiója közvetlenül és NiO mintán keresztül (Amptek pontdetektor) B: A Si(444) csúcs diszperziója

A: transzmissziós jel Mythen detektoron B: NiO XANES spektruma Mythen és Amptek detektorokkal 26

Laboratóriumi XANES - példák

KNi^{IV}F₆ XANES spektrumai az idő függvényében, és ennek elsőrendű₂₇ kinetikai illesztése.

Laboratóriumi XANES – oldat minta

Különböző oxidációs állapotú nikkelvegyületek Ni K-él XANES spektruma és deriváltja

Laboratóriumi XANES – oldat minta

Összegzés

- ✓ Elem specifikus.
- ✓ Lokális környezet vizsgálatára alkalmas, független a hosszútávú rendezettségtől.
- ✓ Mérhető gáz, folyadék és szilárd halmazállapotú minta is.
- ✓ Oxidációs állapot meghatározható (E_0).
- ✓ Geometria és szerkezet érzékeny.
- ✓ Megállapítható a szomszédos atomok száma és minősége.
- ✓ Információt ad a rendszer rendezetlenségéről.
- In-situ alkalmazható, más technikákkal kapcsolható
- ✓ Extrém mérési körülmények között is alkalmazható (nyomás, hőmérséklet)
- ✓ Alapvetően tömbi fázis vizsgálatára alkamas, de felület szelektív mérési elrendezések is kialakíthatóak.

30

Ajánlott irodalom

- Vankó György: A kémia legujabb eredményei 100. A szinkrotronsugárzás újszerű kémiai alkalmazásai, 2008, Akadémiai Kiadó
- Scott Calvin: XAFS for Everyone, 2013, CRC Press
- YasuhiroIwasawa,KiyotakaAsakura, MizukiTada ed.: XAFS Techniques for Catalysts, Nanomaterials and Surfaces, Springer
- www....

31

Köszönöm a figyelmet!

