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"Survival kit for superconductivity" 

•Below certain temperature (TC, the SC transition temperature) the electrical resistance of certain 
materials becomes zero. 

•Some conventional superconductors: Nb (9.26K), Pb (7.19K), V (5.3K), Ta (4.48K), Hg (4.15K), Sn (3.72K), 
In (3.41K), Al (1.2K), Zn (0.85K), Ti (0.39 K), W (0.015K) (See http://hyperphysics.phy-
astr.gsu.edu/hbase/solids/scond.html). 

•Superconductors are ideal diamagnets, weak magnetic fileds do not penetrate the bulk of the 
superconductor (Meissner effect). High magnetic field destroys superconductivity. The critical field, HC 
varies between ~10-4 T (W) to ~0.2 T (Nb). 

•There is a narrow layer at the boundary, where the external magnetic field decreses exponentially to 
zero. Characteristic length: l (penetration depth). 

•In the SC state the specific heat depends exponentially on the temperature. 

•Microscopic BCS theory (Bardeen, Cooper, Schrieffer):  

•the electron-phonon coupling can introduce an attractive interaction between the electrons which 
may overcome Coulomb repulsion. The phonon mediated attraction is a local interaction, Ve-ph=-
(2l/n)d(r1-r2).  

 

 

 

•The ground state of two electrons with attraction is a bound state with E=-2D, where D=ħwDexp(-
1/l) is the superconducting energy gap. (D(T=0)≈1.76kBTC, approaching TC it vanishes by (TC-T)1/2. ) 
In the SC state bound states of electron pairs with k and -k are formed (Cooper pairs) 

•The superconducting order parameter is a complex number with the absolute value equal to the gap, 
and the phase f. 

Naive picture: an electron moving in the lattice 
attracts the ions, which will than attract the next 
electron passing by. 



Andreev reflection 

At a normal metal – superconductor (NS) interface the 
Andreev reflection is the basic process for charge conversion. 
An incident up-spin electron with energy E=eF+e drags with it 
a down-spin electron of energy E=eF-e to form a Cooper pair in  
the superconductor leaving behind a hole in the spin-down band. 

In a bulk superconductor repeated Andreev reflections lead to the  
modification of the energy eigenstates, and the formation of the  
superconducting condensate with Cooper pairs. 

N S 

The process of Andreev reflection can be described by the Bogoliubov – de Gennes (BdG) equations. 
The BdG equations could be formally derived from the BCS theory of superconductivity. 

In a normal metal coupled to a superconductor Andreev 
reflections introduce superconducting correlations, these 
are called proximity effects. 



"Electron - hole description" of superconductivity  

Superconductivity is described by the BCS mean field Hamiltonian: 

This hamiltonian is strange in the sense, that the pairing terms do not conserve the particle number. 
Usually the Hamiltonians contain c+c -type terms. This structure can be recovered with the 
transformation: 
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The "h+" operator annihilates an electron, i.e. it creates a hole. The spin label is not necessary any more as 
the operators "e" stand for spin up electrons and the operators "h" stand for spin down "holes". 

Let us first look at the normal state Hamiltonian (D=0) with the new set of operators: 
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A -k, down spin electron state is converted to k down spin hole state. The 
quasiparticle energy of the hole state is opposite to that of the electron state. 
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Electron state: • -e charge 
• |k|>kF   k>0; |k|<kF   k<0 
• sign of k and v~d/dk are the same 

Hole state: • +e charge 
• |k|>kF   k<0; |k|<kF   k>0 
• sign of k and v~d/dk are opposite! (positive k hole 
state propagates in negative direction!) 



Vacuum state, ground state in the normal metal (D=0) 
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sphere) is obtained by filling all the electron 
states below the Fermi energy 
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Quasiparticles in the superconducting state 

The Hamiltonian in the electron-hole representation (the constant Sk term is omitted) : 

In this new representation the particle number is conserved (but the charge is not!). The interaction 
term corresponds to Andreev reflection, where an electron is converted to a hole travelling on the time-
reversed path or vica versa. 
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In order to diagonalize the Hamiltonian new operators are introduced: 
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The diagonalization condition is k=0. Taking uk as a real number, and imposing E>0: 
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A gap of 2D opens in the quasiparticle spectrum! 

The quasiparticles of the superconductor (k0 and k1 are coherent superpositions of electron and hole 
normal quasiparticles. For k>>|D| the normal state quasiparticles are recovered. For k=0 the quasiparticles 
are an equally weighted superposition of electron and hole normal quasiparticles.  



Superconducting ground state 
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The red parts are hole-like states in the sense that the sign of k 
is opposite to the sign of v~dEk/dk. However, in all states the 
electron (ek) and the hole (hk) quasiparticles are superimposed.  
Similarly the blue parts are electron-like states. 
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Bogoliubov - de Gennes equation 

The Schrödinger equation: )(
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In the Andreev reflection the incoming electron has 
an energy E=eF+e, whereas the reflected hole has 
an energy E=-(eF-e). The coupling between these two 
can be accomplished by the following equation: 
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where D is the pairing potential and the time dependence is needed to cause a change in the energy 
from eF+e to -(eF-e). This time dependence can be 
suppressed by the gauge transformation: 
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So finally the BdG equation reads:  













=

















--D

D-
 v

u

t
i

v

u

H

H

F

F 
)( e

e

Note: if more SC terminals are present with different chemical potentials then the time dependence of 
the pairing potential cannot be transformed away -> AC Josephson effect 

The same equation can be directly derived from the superconducting Hamiltonian! 



Derivation of the BdG equation from the SC Hamiltonian (for a k-state) 
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We consider positive energy 
solutions, the negative energy 
states are occupied (Fermi sphere). 

Electron eigenfunction: 

0at
22

2222

=- EkkE
m

k

m

k
Fe

Fe 
FFe Ekk e/1+=

xikxik

F

F hh eEe
mp

mp








=






















--

-

1

0

1

0

)2/(0

02/
2

2

e

e

Hole eigenfunction: 

0at
22

2222

=- EkkE
m

k

m

k
Fh

hF 
FFh Ekk e/1-=

Solution in a normal metal 
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Solution in a 
superconductor 

0
2

0
2

22

22

=







+--D

=D+







--

vE
m

q
ue

veuE
m

q

F

i

i

F

e

e

f

f





For |e|<|D|: 

iqxiqx

F

i

i

F
e

v

u
Ee

v

u

mpe

emp








=






















--D

D-
- )2/(

2/
2

2

e

e
f

f

u
e

E
m

q

v
i

F

f

e

D









--

-=
2

22
2

2
22

2 Δ
2

)( +







-= F

m

q
qE e

















 D-
=

F

F

E
kq

e

22

22 1
Fe kq -+  like,electron""

Fh kq --  like,hole""

k 

E 

-kF kF 

2|D| 

qe -qe qh -qh 















 -D
=

F

F

E
ikq

e

22

22 1

Eigenvectors: (u,v)=? (actually it is enough to calculate v/u) 
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For |E|>|D|: 

 electron-like: 
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For |E|<|D|: 
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Solution for an NS-interface 
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NS interface at x=0, which has perfect transparency (T=1) if the superconductivity is suppressed 

DS=|D|eif at x>0 (superconductor) DN=0 at x<0 (normal metal) 
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Matching the wave functions: 
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Andreev reflection amplitude for 
perfectly transmitting barrier 
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In an NS junction with perfect transmission the normal 
reflection is prohibited, and all the incoming electrons 
are Andreev reflected with a probability of one. 

For each incoming electron a  
charge of 2e is transmitted 
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It can be shown that for |E|<|D|: 

Whereas the Andreev reflection 
amplitude is 1, the normal reflection 
vanishes for a T=1 channel: 
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Opposite limit: a weakly transmitting tunnel 
barrier between the N and S electrode 
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For a tunnel barrier with low transmission (T<<1) the Andreev reflection is suppressed (the probability 
for the transmission of 2e charges ~T2), thus the transport is dominated by the direct quasiparticle 
tunneling at |eV|>|D|. 

The dI/dV curve of the NS tunnel junction directly 
measures the superconducting density of states! 



BTK theory 
(conductance of a ballistic NS junction) 

 
 
 
 
 

)(
2

)(
F

F x
k

E
ZxV d=

),0()0()0( SN = )0(
22

)0(')0('
2

F

F
SN =-



m

k

E
Z

dimensionless  
„barrier strength” 

Andreev reflection normal reflection quasiparticle transmission 

Matching the wave functions: 
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G.E. Blonder, M.Tinkham, 

T.M.Klapwijk,  
PRB 25, 4515 (1982) 

 

In a realistic junction between a normal metal and a 
superconductor a finite interface scattering has to be 
considered.  
 
The BTK theory calculates the I-V curve of an NS junction by 
modeling the interface scattering with a Dirac-delta potential 
described by a dimensionless scattering strength, Z.  
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DS=|D|eif at x>0 (superconductor) DN=0 at x<0 (normal metal) 
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Reflection probabilities: 

The probability for Andreev reflection: 
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The probability for normal reflection: 

-For Z=0 and E<D all the incoming 
electrons are Andreev reflected 

Source: 
C.H. Kant  

Ph.D. thesis 

-At E<D the probability for quasiparticle 
transmission is zero, i.e. A+B=1.  

-At E>>D  A=0 and the  
probability for normal  
reflection is: 

N

N
N

NN

T

T
Z

Z
T

Z

Z
TREB

-
=

+
=

+
=-==D

1
;

1

1

1
1)(

2

2

2

2

-The Andreev reflection probability at zero energy: 

2

22 2)21(

1
)0( 









-
=

+
===

N

N
A

T

T

Z
REA



Calculation of the current 
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Let us calculate the current at the normal side:  

The conductance, GNS=dI/dV: 

The area of the contact 
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The normal state conductance (D=0): 
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Z>>1 limit: conventional  
NIS tunneling curve,  
G(eV< D)=0, sharp peak at D 

Z=0 limit: G(eV<< D)=2GN,  
for each incoming electron  
a hole is reflected, and a  
charge of 2e is transmitted 
 

Source: 
C.H. Kant  

Ph.D. thesis 



piezo actuator 

screw-thread 

sample 

Nb tip 

For a normal metal with P=0 an incoming electron is 
Andreev reflected, thus for each incoming e- a charge 
of 2e is transmitted, GNS=2GN 

The fit of the I-V 
curves tells the  
spin-polarization! 

 
As a first approx.: 
GFS(V=0)=2(1-PC)GN 

Application: measurement of spin-polarization with SF contact 

In a half-metal (P=1) Andreev reflection is  
prohibited, GFS=0 

BUTE, 2005 

SC tip 

ferromagnetic sample 



Inclusion of spin polarization in the BTK theory 

Spin polarization on the N side can be considered as a sum of  
fully polarized and unpolarized currents: 
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For the unpolarized current the original BTK result is used.  
In the polarized current the Andreev reflection is  
suppressed, 
 
The probability for the normal reflection is rescaled to  
preserve current conservation: 

Assumption: the ratio for the normal reflection  
and quasiparticle transmission is independent of spin-polarization: 
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For more details see: G. J. Strijkers et al. Phys. Rev. B 63, 104510 (2001). 
I. I. Mazin et al. J. Appl. Phys. 89, 7576 (2001).  

Y. Ji etal. Phys. Rev. B 64, 224425 (2001). 
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First  measurements: tip-sample approach 
R. J. Soulen Jr., J. M. Byers,* M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. 

Tanaka, J. Nowak, J. S. Moodera, A. Barry, J. M. D. Coey, Science 282, 85 (1998) 

One of the first studies demonstrating the Andreev 
spectroscopy technique for various ferromagnetic 
metals. 
 
The spin-polarization is  
determined by the simple formula: 
   GFS(V=0)=2(1-PC)GN 
 
 
Probably rather large diffusive contacts were 
studied, as the BTK theory would not give good 
fit to the curves. 
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Proximity effect: the Andreev reflection introduces super- 
conducting correlations at the normal side. The Andreev  
reflected hole is travelling on the time-reversed path of the  
incoming electron, thus the electron and the hole form  
phase-conjugated pairs. 

Proximity effect (why shall we use ballistic contacts?) 

In a ballistic contact the reflected  
hole travels back to the reservoir,  
where it thermalizes. The incoming  
states at the NS interface all have 
the distribution of the left electrode, 
and no superconducting correlations 
are present.   

Ballistic contact: 
Diffusive contact: 

In a diffusive contact an  
electron and the Andreev  
reflected hole can bounce 
back and forth on the  
same trajectory between  
different points of the  
contact, causing a coherent superosition. 

An energy difference, DE destroys the phase coherence after 
a time: 
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Thus the coherence length is: 
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The phase coherence can be destroyed by magnetic field,  
temperature and applied voltage 
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+ the inelastic 
diffusive length:  
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Proximity effects 1.: reentrance 
C.W.J. Beenakker, cond-mat/9909293,  T.M. Klapwijk, Journal of Superconductivity 

17, 593 (2004), C.W.J. Beenakker, Rev. Mod. Phys. 69, 731 (1997) 

In a diffusive contact, the incoming electron reaches the interface 
through a lot of scatterings, however the Andreev reflected hole comes  
back on the time-reversed path, thus a fully phase coherent NS junction 
is expected to be completely transparent, GNS=2GN  

The experiments, however show, that  
the conductance increases below the Tc, 
but it drops at low enough temperature.  
(H. Courtois et al., Superlattices and 
Microstructures 25, 721 (1999)) 

The incoming electron acquires a phase f, whereas  
the Andeev reflected hole on the time-reversed  
path acqires a phase –f, but the Andreev reflection  
causes a phase shift of p/2, thus the net phase  
between the two paths is p! 
 

At low enough temperature the coherence length increases, 
and the destructive interference becomes important.  
It can be shown, that at T=0 GNS=GN! 
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S N 

NS interface 
(Z=0) 

The diffusive region is 
modelled by a single barrier 
with transmission tD 

p phase shift, 
destructive  
interference! 

AR 
(p/2) 

AR 
(p/2) 



Proximity effects 1.: reentrance 
C.W.J. Beenakker, cond-mat/9909293,  T.M. Klapwijk, Journal of Superconductivity 

17, 593 (2004), C.W.J. Beenakker, Rev. Mod. Phys. 69, 731 (1997) 
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NS interface 
(Z=0) tD 

p phase shift, 
destructive  
interference! 
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The zero-bias conductance of an NS junction: 
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In an AR 2 electron  
charges are transmitted 
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Averaging with random matrix theory: 
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Note: without the phase shift of „i” GNS=2GN would come! 



Proximity eff. 2.: reflectionless tunneling 
T.M. Klapwijk, Journal of Superconductivity 17, 593 (2004), C.W.J. Beenakker, Rev. Mod. 

Phys. 69, 731 (1997) 
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If the NS interface has small transmission,  
tNS<<1, the amplitude of Andreev reflection is  
even smaller, rA~ t2

NS (2 electron charges cross the  
barrier). However, the electron can be reflected  
back to the NS interface by the disordered 
region several times, thus it can repeatedly  
attempt the Andreev reflection. 

The zero-bias  
conductance of  
an NS junction: 
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For a single process: 
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Summing up the multiple attempts: (the phase is same for all!) 

A. Kastalsky et al. Phys. Rev. 
Lett. 67, 3026 (1991) 
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The conductance is  
considerably larger! 
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General statement: (Beenakker, Rev. Mod. Phys. 69, 731 (1997)) 

  



Proximity effects 3.: ferromagnetic electrode 
A.I. Buzdin, Rev. Mod. Phys. 77 935 (2005) 
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A Cooper pair in a superconductor consists of  
two electrons with opposite spins and momenta.  
In a ferromagnet the up-spin electron decreases  
its energy by bHeff, while the downspin 
electron energy increases by the same value. To 
compensate this energy variation, the up-spin electron 
increases its kinetic energy, while the down-spin electron 
decreases its kinetic energy.  

Oscillation of the order parameter 



Josephson effect (traditional approach) S1 S2 I 
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e= Macroscopic wave functions. ||2~ particle density ()  

+ phase difference (d=f2-f1) 

We apply a voltage of eV on the junction! 
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Dividing by eif1 (or eif2) and writing the equations separately for the real and imaginary part: 
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The current is proportional to d1/dt=-d2/dt: 
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Subtracting the equations for the phase: 

Josephson  
equations 



Josephson effect (traditional approach) S1 S2 I 
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Applying a constant bias voltage: 
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sin 00 d An AC current with w=2eV/ħ is flowing. 

The DC current averages to zero. 

At zero bias voltage a maximal suppercurrent of I0 can flow between the two sides! 
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Voltage biased junction: Current biased junction: 

Switching at the critical current! I 
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Let us superimpose an AC 
(microwave) voltage on a DC voltage! 
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At V0=±ħw/2e a DC current will flow! 

If we would expand in higher order, we would get that DC current can flow at: 
where n is an integer 
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Shapiro steps, SQUID S1 S2 I 
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Shapiro resonances at voltage and current bias: 

Superconducting quantum interferometer device (SQUID):  

Two Josephson junctions in parallel in a "loop" geometry. The loop encloses a magnetic flux of F 
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The superconductor have a well-defined phase at very position. -> The 
pase difference between A and B is constant for all trajectories. 
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The maximal value of the critical current is tuned by the magnetic flux:  ( )/cos2 0max F= eII



Andreev bound states in a short SNS junction with phase bias 

The electron-hole par can bounce back 
and forth in the normal region. 

( )D+ /arccosERf( )D+- /arccosELf
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eS1   -  |D|exp(fL) N S2   -  |D|exp(fR) 

If the aquired phase is n2p 

(constructive interference) a bound 
state is formed. 

The condition for the bound state: ( ) =D+- pff 2/arccos2 nELR
( )2/cosdD=E

Single channel contact with perfect transmission: 
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The condition to get nonzero solution: ( ) =- 01det M
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Barrier with transmission  Normal scattering for the electrons: 
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Normal scattering for holes: 

Andreev reflection at the left: Andreev reflection at the right: 

Single channel contact with arbitrary transmission: 
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Current - phase relation (V=0, phase biased junction) 

Reminder: calculation of the current in a 1D conductor: 
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However, A and the superconducting phase, f are not invariant for a gauge 
transformation. The energy must be a function of a gauge invariant function of A and f. 
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Current phase relation for the occupied 
(negative energy) Andreev bound state: 

For a tunnel junction (<<1): 
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We get back the  
Josephson relation! 



Finite bias voltage 
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If we plug it to the current phase relationship of the occupied Anddreev bound statewe get an 
alternating current averagong out to zero. 
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The time averaged current is: 

Transition probability: 



A more complete descrition at finite bias : Multiple Andreev Reflections 
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Scattering on the barrier: 

The DC current: 

E 
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Wavefunctions at the left and right side of the barrier: 

At finite bias the electrons and holes gain or loose an energy of eV when they 
cross the barrier. We start a quasiparticle with E-D from the left side. It 
gains an energy eV, but if E+eV<D it can only be Andreev reflected as a hole. 
Going backward the hole gains an energy of eV, and so on. Finally the energy 
will increase above +D and a quasiparticle can leave to the electrodes. 

The amplitude of the incoming 
quasiparticle: 

The Andreev reflection amplitude: (f=0, it is 
included in the timedependence!) 



Multiple Andreev Reflections - qualitative picture 

•If eV>2D the quasiparticle started from the left 
side gains enough energy to reach an empty 
qausiparticle state on the right side. In this process 
a single electron charge is transmitted with 
probability . 
 
•If eV>D single qausiparticle transmission is 
prohibited, but with a single Andreev reflection the 
charge transfer is already possible. In this process 
2e charges are transmitted with probability of 2 

(the carriers cross twice the barrier) 
 
•At eV>2D/n an nth process with a charge transfer 
of ne and a probability n becomes available 
 

•Accordingly at the I-V curve shows singularities at 
eV=2D/n.  
 
•If we have a junction with a few conductance 
channels all the transmission probabilities can be 
determined by placing the junction between 
superconducting electrodes and fitting the "subgap" 
structures in the I-V curve. 



Measurement of the current-phase relation 

Single atom 
 Al contact  

Josephson 
junction   

To know the transmission probabilities of the AC the subgap 
structures must be measured in the I-V curve. This is done with a 
voltage biased measurement. In principle the DC current of the JJ 
should be zero at finite Dc bias, thus the I-V curve would come 
purely from the AC. In reality the JJ also has structures in the I-
V curve due to interferences with the environment. The  
I-V curve of the JJ can be separately measured by completely 
breaking the junction.  
 )()()( VIVIVI JJASQUIDAC -=

The device is an "atomic 
SQUID" (ASQUID), i.e. an SC 
atomic contact (AC) and a 
Josephson junction (JJ) in 
parallel. The critical current is 
much larger for the JJ than 
for the AC.  

After subtracting the I-V 
curve of the JJ from that of 
the ASQUID the transmission 
probabilities of the AC can be 
determined. 



Measurement of the current-phase relation 

d The phase difference on the atomic contact is:  




d 0/ FF+=

At zero temperature the JJ switches out of its zero 
bias state at =p/2 (at a critical current I0), 
therefore the critical current of the ASQUID is: 

( )2/)( 0

0 p ++= ACASQUID III

I.e. the critical current of the JJ is modulated by the current phase relation of the AC. 

I.e. the critical current of the JJ is modulated by the current phase relation of the AC. 
In experiment we measure the mean switching current instead of the critical current, which is a 
thermally activated stochastic variable. Short current pulses are applied on the sample and the 
distribution of the switching current is measured. ( )2/)( p ++= AC

sw

JJ

sw

ASQUID III

0/)( IIS sw

ASQUID =

The average value of the JJ switching current can be independently measured with on aopen AC. 
The such determined current-phase relation shows remarkable 
agreement with the theory: 

T=0 current 
 phase rel. 

switching theory  
 with Teff=126mK 

I 
(a

.u
.)

 

+p/2 +p/2 



Direct spectroscopic measurement of Andreev bound states 

A carbon nanotube is placed in a superconducting loop 
as a Josephson junction. At the middle of the nanotube 
a superconducting tunnel probe is placed. The SC loop 
is grounded, and the voltage on the tunnel probe can be 
varied. The I-V curve builds upt form the Fermi 
functions, the known known density of states of the 
tunnel probe and the unknown DOS of the nanotube. 

In the density of states four discrete states can be 
observed showing a periodic modulation with the phase 
difference (~flux) -> a two pairs of Andreev bound 
states! 



Direct spectroscopic measurement of Andreev bound states 

Changing the gate voltage the energy levels in the nanotube can be tuned.  Some features can be modelled 
as a single QDOT in the tube with two spin-split levels. Assuming double quantum dots all the observed 
features can be described -> new spectroscopic tool! 



Proximity effects 4.: SNS junction 
(H. le Sueur, P. Joyez, H. Pothier, C. Urbina , D. Esteve - Saclay) 

The variation of the DOS in 
a short wire between phase 
biased SC electrodes is 
measured with a combined 
STM + AFM setup. 

In the normal region usually a proximity 
induced minigap is observed near zero 
bias. However, at a phase difference 
d=p the superconducting correlations 
are suppressed due to interference 
effect.   

bulk S  

The density of states in  
the bulk SC electrode: 


