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"Survival kit for superconductivity"

Below certain temperature (T, the SC transition temperature) the electrical resistance of certain
materials becomes zero.

Some conventional superconductors: Nb (9.26K), Pb (7.19K), V (5.3K), Ta (4.48K), Hg (4.15K), Sn (3.72K),
In (3.41K), Al (1.2K), Zn (0.85K), Ti (0.39 K), W (0.015K) (See http://hyperphysics.phy-
astr.gsu.edu/hbase/solids/scond.html).

Superconductors are ideal diamagnets, weak magnetic fileds do not penetrate the bulk of the
superconductor (Meissner effect). High magnetic field destroys superconductivity. The critical field, H,
varies between ~104 T (W) to ~0.2 T (Nb).

*There is a narrow layer at the boundary, where the external magnetic field decreses exponentially to
zero. Characteristic length: A (penetration depth).

In the SC state the specific heat depends exponentially on the temperature.

*Microscopic BCS theory (Bardeen, Cooper, Schrieffer):
‘the electron-phonon coupling can introduce an attractive interaction between the electrons which
may overcome Coulomb repulsion. The phonon mediated attraction is a local interaction, V. ,,=-

- Naive picture: an electron moving in the lattice
.—’ attracts the ions, which will than attract the next

@ { @ electron passing by

*The ground state of two electrons with attraction is a bound state with E=-2A, where A=hoyexp(-
1/1) is the superconducting energy gap. (A(T=0)*1.76k;T,, approaching T it vanishes by (T.-T)¥2.)
In the SC state bound states of electron pairs with ki and -k are formed (Cooper pairs)

*The superconducting order parameter is a complex number with the absolute value equal to the gap,
and the phase ¢.



‘ Andreev reflection

N S
| At a normal metal - superconductor (NS) interface the
Andreev reflection is the basic process for charge conversion.
Ay - e An incident up-spin electron with energy E=er+¢ drags with it

@
%7 a down-spin electron of energy E=g¢—¢ to form a Cooper pair in
\ / / the superconductor leaving behind a hole in the spin-down band.
N _

In a bulk superconductor repeated Andreev reflections lead to the
*~— modification of the energy eigenstates, and the formation of the
g superconducting condensate with Cooper pairs.

In a normal metal coupled to a superconductor Andreev
reflections introduce superconducting correlations, these
are called proximity effects.

The process of Andreev reflection can be described by the Bogoliubov - de Gennes (BdG) equations.
The BdG equations could be formally derived from the BCS theory of superconductivity.



‘ "Electron - hole description" of superconductivity

Superconductivity is described by the BCS mean field Hamiltonian:
~ . . . i} V describes the attractive
Hs =& (Cmcm T Ck¢ck¢)+ AC4C +AC, Gy A :V<C_k¢ck¢> interaction, & is measured
k ~ from the Fermi energy.

pairing

This hamiltonian is strange in the sense, that the pairing terms do not conserve the particle number.
Usually the Hamiltonians contain c*c -type terms. This structure can be recovered with the
transformation:
_ At
& =C4, h =C,,

The "h*" operator annihilates an electron, i.e. it creates a hole. The spin label is not necessary any more as
the operators "e" stand for spin up electrons and the operators "h" stand for spin down "holes".

Let us first look at the normal state Hamiltonian (A=0) with the new set of operators:
Ay =D &lere —heh )+ Y& (b +hh, =)
k k

A -k, down spin electron state is converted to k down spin hole state. The
quasiparticle energy of the hole state is opposite to that of the electron state.

A& Electron state: - -¢ charge
* |k|>k|::> §k>0,' |k|<kF:> §k<0
- sign of k and v~d&/dk are the same

4
........ Hole state: - +e charge
‘ k ° |k|>k|:2> §k<0,' |k|<kF:> §k>0
-k ke - sign of k and v~d&/dk are opposite! (positive k hole

state propagates in negative direction!)



Vacuum state, ground state in the normal metal (A=0) ‘

Electron description: (Ik|>ke, 1k'|<kg)

Vacuum state: @) @) The ground state of a normal metal (Fermi @D @)
ho electron :|E  :|E sphere)is obtained by filling all the electron :
states are filled i states below the Fermi energy
&t &t
_ G) =TIlcc |0)
Ck‘o>e 0 N &<0 KTk 1™/
Sef ST
Electron-hole description: By filling all the states below the Fermi energy
N both in the electron and the hole o h
New vacuum state e h e band we get the same ground state:
in the electron-hole 1E  tE E ;
picture: ! ‘ > _ N +‘ >
h|O) =0, & | &} Ol = {580
k eh — ! ! —_ k; :
1 T i — +
ek\0> =0 | &7 ‘G>N —§I_>IOC_k¢ }:IOCkT‘O>eh
eh gk' | I K K é: .
Transformation from : 5":' “ ’

the e to the e-h
vacuum state: empty states —

‘O>eh - 1;[ C:¢‘0>e

Lh A% lh e

occupied states —




‘ Quasiparticles in the superconducting state

The Hamiltonian in the electron-hole representation (the constant ¢, term is omitted) :

ka(ekek h'h )+Ae;h +Ahe,

Andreev reflection

In this new representation the particle number is conserved (but the charge is notl). The interaction
term corresponds to Andreev reflection, where an electron is converted to a hole travelling on the time-
reversed path or vica versa.

In order to diagonalize the Hamiltonian new operators are introduced:
g + + + *
Vi = U8 +V, N, H = Z E, (7k17k1 - 7/ko7ko)+ Y ko + T koY ks
k

ka = _Vljek + u:hk q 2 2) * * ok
E. =& u =] )+ Auvg + A'ugy,

M = —2& UV, + Aulf - A*Vlf

The diagonalization condition is n,=0 Taking u, as a real number, and imposing E>O:
1/2 1/2

NS Y R
E=ns | v MRl MRl '

Ed) Ml A
The quasiparticles of the superconductor (y,o and y,; are coherent superpositions of electron and hole
normal quasiparticles. For £,>>|A| the normal state quasiparticles are recovered. For &,=0 the quasiparticles
are an equally weighted superposition of electron and hole normal quasiparticles.

A gap of 2A opens in the quasiparticle spectrum!



Superconducting ground state ‘

Gap in the
spectrum

Due to the e h
Andreev : 1 :
reflection term
the el. states are
coupled to the
phase conjugated

The positive energy
states are created by<

5"; | the v, operator

hole states with £ The negative energy i
opposite spin dl
pposite spi 'ﬁ states are created by<
the y*, operator
1
g

The red parts are hole-like states in the sense that the sign of k
is opposite to the sign of v~dE,/dk. However, in all states the
electron (e,) and the hole (h,) quasiparticles are superimposed.
Similarly the blue parts are electron-like states.

The superconducting ground state:

G),. = 17350}, = TIC-vie! +UR)0), -

> <+ BCS ground
state

.= TI(=v,c.C”

The evolution of the quasiparticle charge as a function of &



Bogoliubov - de Gennes equation

0 —eA)’
The Schrédinger equation: lhgw =Hy, H= % +eV(r)

The wave equation for holes is the complex conjugate oy, =—H'y
of the corresponding equation for electrons: ot h

An unoccupied electron state with energy E correspond to an occupied hole state with energy -E

Now we describe the system with o ou' . s L
up-spin electrons (u') and down-spin holes (v'): |h§ = Hu’, Iha =—H'v

In the Andreev reflection the incoming electron has H A ety o(u
an energy E=er+¢, whereas the reflected hole has . '
A*e+|ZgFt h . H * v

an energy E=-(¢r—¢). The coupling between these two
can be accomplished by the following equation:

where A is the pairing potential and the time dependence is needed to cause a change in the energy
from eg+¢ to -(eg—¢). This time dependence can be

suppressed by the gauge transformation: u=u'eFtn oy =y gertn
So finally the BdG equation reads: H-&, A T 5 (u
= \h—
N - (H " — 5[:) % ot\v

Note: if more SC terminals are present with different chemical potentials then the time dependence of
the pairing potential cannot be transformed away -> AC Josephson effect

The same equation can be directly derived from the superconducting Hamiltonian!



| Derivation of the BdG equation from the SC Hamiltonian (for a k-state)

] =Z§k(eljek —h'h )+Aekh +Ah'e, W, :(u e, +V hlj)0>eh |:|sl//k =Ey,
k
Help:  |0)=h[0)=0, ee/|0)=(1—¢'e,)0)=1:|0), {e,,h}=0

After some

dgebra: &€ |0)— & Vh|0) + Ave;|0) + Auhy| 0) = Eug|0) + Evh;|0)

. . . u )<« elektror & A Ju) _(u
Ina matrix form: W, = (uek +Vvh, )O>eh — [Vj < hole = (A* —éﬂ(j(VJ = E[Vj

| Solution in a normal metal |
We consider positive energy Electron eigenfunction:
solutions, the negative energy
states are occupied (Fermi sphere). p*/2m—g, 0 1 gl _ 1 il
0 —(p?/2m-g&;) 0

2
hk _Esk|>k atE>0 k =k.JI+E/e

Hole eigenfunction:

p’/2m—e. 0 0 ol _ 0 olx
0 —(p?/2m—-g ) \1 1

n’k:  nk,’ =T
m m




[pZ/zm—eF Ale* j(uje _ E(ujeiqx Solution in a
Vv

A —(p*12m—ge) v superconductor
2.2
[hzq — & —EJU+\A\e”’v:O h°q° . _E g 2
m ~ om F EZ(Q)=[ _gFj +[A
_ n2q V=- 7 u 2m
Ale*u —( — & + E]v =0 Ale
2m
2 2 nyn i
ookt 1s [E2—|A| +* =electron-like, |q,| > k.
i S " =hole-like, |q,| < k¢
> k P|A| For le|<|Al: ‘A‘Z—Ez
.Y q° =kZ| 1£i
3
Eigenvectors: (u,v)=? (actually it is enough to calculate v/u)
For |E|>|Al: For |E|<|Al:
electron-like: hole-like: electron-like: hole-like:

u Ale' u, Ale'? u, Ale' u, Ale'?

e €

S )



Solution for an NS-interface

NS interface at x=0, which has perfect transparency (T=1) if the superconductivity is suppressed

A=0at x<0 (normal metal) \ As=|Ale'*at x>0 (superconductor)
E
4 r, 1
k
ke
—ikex 0 ik X ue 10X uh —igyX
P, (x) ey +r,)  |e" P (x)=t,| °|e*+t e '
f 1 v, v,
Incoming elec‘rr'on Andreev reflected hole  Transmitted electron and hole-like quasiparticles
Normal reflec’red el.
Matching the wave functions: (2)-(4)=2tv,=0=t =0
¥, (0) = ¥(0) ¥y (0)— ' (0) =0 (1)~ (3) =2, =2tu, =0
1+r,=tu, +tu (1) k,—rk, =tu.q, —tu.d, 1)+ =>2=2tu, =t =1/u,
r,=tv. +tv. (2) r.k, =tv.g. —tv,q, (2)+(4)=>2r,=2tv, =2v,/u,

Andreev approximation: - 1-r =tu,—tu, (3 y 0
A«Er = k, 7k, 2, %q, ry=tv,—-tv, (4) fe =Y, Ta=Ve /U,




Andreev reflection amplitude for
perfectly transmitting barrier

—| E— E)JE"—|A] |, El>|A
o[ () e

u 1 : 2
: W(E_.,/\A\ -E?), E| <A

\

rA(El¢) -

It can be shown that for |E|<|Al: |arg(r,(E,¢))= ¢+arcco{&}
Whereas the Andreev reflection \rA(E,¢)‘: 1

amplitude is 1, the normal reflection

vanishes for a T=1 channel: (E,#) =0

Inan NS junction with perfect transmission the normal For each incoming electron a

reflection is prohibited, and all the incoming electrons = charge of 2e is transmitted
are Andreev reflected with a probability of one. \

arg(r.(E. )

O+t m, GNS — ZGN
o+m/2 | R At E=0 r(E.9)| |
a /2 _ T
phase shift i
¢ occursl!

1 L ] ) 0.0 L
1 2 3 -3 -2 -1 0 1 2 3

£/l £/




Opposite limit: a weakly transmitting tunnel
barrier between the N and S electrode

For a tunnel barrier with low tfransmission (T<<1) the Andreev reflection is suppressed (the probability
for the fransmission of 2e charges ~T2), thus the transport is dominated by the direct quasiparticle

tunneling at |eV/|>|Al.

The dI/dV curve of the NS tunnel junction directly

> A D

A leU @

r NTIS

1" ~T - [ds gy (6 —eU) fyy (s —eU)- gs(e)(L- f(£))
I~ ~T -jdggs(g) f.(£)-g, (e —eU)(1- f, (¢ —eU))
| =17 =17 ~T-gy (&) de g5 (&)(fy (6 —eU) - fs(¢))

£ T 9 (e0)[d25(6) fu(—eV)

40

di/dV (uS)

N
o

measures the superconducting density of states!

L

| 1 1
0.0 0.2 0.4
V (mV)

1 \ 1
-0.4 -0.2



BTK theory

(conductance of a ballistic NS junction)

G.E. Blonder, M.Tinkham,
N S T.M.Klapwijk,
PRB 25, 4515 (1982)

Ay=0at x<0 (normal metal)

_ kF/ kF/

1) . 1) . 0) . u. )\ . u :
¥, (X :]l e | o™ 4| [ —t| © |e'% h g it

/

In arealistic junction between a normal metal and a
superconductor a finite interface scattering has to be
considered.

The BTK theory calculates the I-V curve of an NS junction by
modeling the interface scattering with a Dirac-delta potential
described by a dimensionless scattering strength, Z.

2E, dimensionless

V(x)=2 5(x) .barrier strength”

\

F
Asf|A|ei¢a'r x>0 (superconductor)

E

/

Andreev reflection normal reflection quasiparticle transmission

Matching the wave functions: P, (0) =¥,(0)=W¥(0), ¥'\(0)-¥'5(0)=Z ”

2E. 2m

"

¥(0)

F



Reflection probabilities:

The probability for Andreev reflection: A= ‘I‘A‘Z
The probability for normal reflection: B = ‘I‘e‘z

E<A E>A
3 N B g =l
E?+ (A —E*)(1+22%) le+@+222)f
2 2
Bo1-A o 47:(+77)
le+@+222)f
4
-For Z=0 and E«A all the incoming | _E
electrons are Andreev reflected &= E2_ A2
-At E<A the probability for quasiparticle
transmission is zero, i.e. A+B=1.
2
-At E»>A A=0 and the B(E>>A)=R, =1-T, = Z -
probability for normal 1+2
reflection is: T, = 1 7%= 1-T,
1+7 T,

-The Andreev reflection probability at zero energy:  A(E=0)=R, =

1.00

0.75¢

0.50¢

0.25¢

0.00¢

1.00; Source: |
C.H. Kant |

075 Ph.D. thesis |

0.50¢
A

0.25¢

0.00 .

0 1 2 3

0.00<Z<1.25

E/A

(1+2Z%)°

2
[Ty
2-T,



Calculation of the current

‘ 2.0

Let us calculate the current at the normal side:
| = e?JV(E)p(E)[1+ A(E)-B(E)][f(E-eV)- f(E)dE

The area of the contact
The conductance, 6y s=dI/dV:

Gy = —eZSVFij[1+ A(E)-B(E)] f'(E —eV )dE
The normal state conductance (A=0): X SV p.
N T 2
1+Z

Ghs =—(1-Z*)[[1+ A(E)-B(E)] f'(E —eV)dE

NN

Z=0 limit: G(eV<«< A)=26,, Z>>1 limit: conventional

for each incoming electron | NIS tunneling curve,

a hole is reflected, and a G(eV< A)=0, sharp peak at A
charge of 2e is fransmitted

o )

1.5+

1.0OF

<
W

N o

Normalized Conductance
o o

1.0F

0.5

A = 1.5meV

0.00<Z2<1.25

—_—
()
T

0.0

Source:

A= 1.5meV CH. Kant |
T=15K Ph.D. thesis

6 4 2 0 2 4 6

Bias Voltage [mV]



Application: measurement of spin-polarization with SF con’racf‘

2.0- screw-thread Nb tip
16 |y \/ 4
o] (S— o —)
1.2-
GIG,
0.81
I BUTE, 2005
>4 SC tip
o sample piezo actuator
. -

For a normal metal with P=0 an incoming electron is

Andreev reflected, thus for each incoming e- a charge In a half-metal (P=1) Andreev reflection is

of 2e is transmitted, 6ys=26y prohibited, 6¢s=0
E I 3 E E | E
Incident
Electron No state
eV 4 The fit of the I-V  available ev (i)—'
......... Q@) ----1--- curves tells the o1l NS T
— spin-polarization! eV No Andreev
Andreev Reflection
Relilz;:;ed As a first approx.: l
Ges(V=0)=2(1-P)6y
p > N (E) N, ( ’) N(E)
| i
N‘(E) N, (E) N(E) Metal (P=100%) Superconductor

Metal (P=0) Superconductor



Inclusion of spin polarization in the BTK theory

Spin polarization on the N side can be considered as a sum of
fully polarized and unpolarized currents:

=1 +1, =21, +(I,—1))
%/_J

Iunpol I pol

G(VvT’ PC’Z) = (1_ I:)C)caunpol (V’T’ Z)+ I:)Ccapol (V’T’Z)

For the unpolarized current the original BTK result is used.
In the polarized current the Andreev reflection is

suppressed, A _s A =0

The probability for the normal reflection is rescaled to

~

reserve current COHSCPVGTiOh:
P BB

Assumption: the ratio for the normal reflection
and quasiparticle transmission is independent of spin-polarization:

R B B ~ B

n

T 1-A-B 1-B 1-A

n
For more details see: 6. J. Strijkers et al. Phys. Rev. B 63, 104510 (2001)
I.I. Mazin et al. J. Appl. Phys. 89, 7576 (2001)
Y. Ji etal. Phys. Rev. B 64, 224425 (2001)

- P.0-2%)[[L-B(E)]f'(E—eV)dE -

GNS

NN

—~(1-P.)(1+ zz)j[1+ A(E)-B(E)] f'(E —eV)dE

Normalized Conductance

2.0

1.5

2.0

1.5

1.0

0.5¢

1.0

0.5¢

[E—y
O

T - 42K
A = 1.5meV
Z =0.00

00<P<10 |

- Z =0.50

6 4

Source:__
C.H. Kant
Ph.D. thesis|

T2 0 2 4 6

Bias Voltage [mV]



R. J. Soulen Jr., J. M. Byers,* M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T.

First measurements: tip-sample approach

Tanaka, J. Nowak, J. S. Moodera, A. Barry, J. M. D. Coey, Science 282, 85 (1998)

. . . A E . E
One of the first studies demonstrating the Andreev Icdent N\ >
spectroscopy technique for various ferromagnetic .. - t"hf @ - emovable shaft
metals. Andreey ”r
hole
. . L. Screw
The spin-polarization is N N g
. . Metal (P=0) Superconductor
determined by the simple formula: o 1
Grs(V=0)=2(1-P,)Gy € o - N
No state oV
_valable =T & [T 2
e o5 el Tip
Probably rather large diffusive contacts were i T Sample
studied, as the BTK theory would not give good
fit to the curves. vt et
2.0 ——
Ttitjizzl Point Base N P; (%) Pe (%)
NiFe -]
1.5 - NiFe Nb NiggFeq film 14 25+2 37 +5
Co Nb Co foil 7 35*x3 42 =*£2
Fe Ta Fe film 12 40+ 2 45 =2
Qt Fe Ta foil 14 46 =*2
D 1.0 [t s apspRaty DL, Nb Fe film 4 42 *2
E R ot Fe V erystal 10 45 *2
© Ni Nb Ni foil 4 23+3 46.5 + 1
Nb Ni film 5 43 =2
0.5 L Ta Ni film 8 4 =*4
‘ NiMnSb Nb NiMnSb film 9 - 58 =23
LSMO Nb Lag ;Sro sMn0O; film 14 - 78 +40
Cro, Nb Cro, film 9 90 =36
0.0 | | | | | | | | |




Proximity effect (why shall we use ballistic con’rac'rs?)‘

Proximity effect: the Andreev reflection introduces super-
conducting correlations at the normal side. The Andreev
reflected hole is travelling on the time-reversed path of the
incoming electron, thus the electron and the hole form
phase-conjugated pairs.

Diffusive contact:

Ballistic contact: : In a diffusive contact an

= electron and the Andreev
- reflected hole can bounce
: back and forth on the

: same trajectory between
: different points of the

= contact, causing a coherent superosition.

I
II
v

An energy difference, AE destroys the phase coherence after
E a time: 7
: r~_
AE 5
Thus the coherence lengthis: £ =/Dz = h_
AE

In a ballistic contact the reflected
hole travels back to the reservoir, = The phase coherence can be destroyed by magnetic field,
where it thermalizes. The incoming i temperature and applied voltage
states at the NS interface all have  :

the distribution of the left electrode

and no superconducting correlations l HD '/ #D diffusive length:
are present. : En = ﬁ En = e—V &= /Dz-in

+ the inelastic



Proximity effects 1.: reentrance

C.W.J. Beenakker, cond-mat/9909293, T.M. Klapwijk, Journal of Superconductivity
17,593 (2004), C.W.J. Beenakker, Rev. Mod. Phys. 69, 731 (1997)

The diffusive region is In a diffusive contact, the incoming electron reaches the interface
mpdelled bY.“ .smgle barrier through a lot of scatterings, however the Andreev reflected hole comes
with transmission 1 back on the time-reversed path, thus a fully phase coherent NS junction
NS interface is expected to be completely transparent, G\ =26
(Z=0)
\ Y G(S) (a)
0.101F
(':/5) The experiments, however show, that 0.1F |
N the conductance increases below the T, % o
AR but it drops at low enough temperature. A L
(n/2) (H. Courtois et al., Superlattices and 0.099r . . :
Microstructures 25, 721 (1999)) 0 400 800 1200
T (mK)
The incoming electron acquires a phase ¢, whereas
) the Andeev reflected hole on the time-reversed
AR : N . path acqires a phase -¢, but the Andreev reflection
(n/2) n phase shift, causes a phase shift of n/2, thus the net phase
: destructive between the two paths is 7!
: interferencel
\ N ] J At low enough temperature the coherence length increases,
e and the destructive interference becomes important.

S N It can be shown, that at T=0 G\ s=6)/



Proximity effects 1.: reentrance

C.W.J. Beenakker, cond-mat/9909293, T.M. Klapwijk, Journal of Superconductivity
17,593 (2004), C.W.J. Beenakker, Rev. Mod. Phys. 69, 731 (1997)

NS interface
(Z§0)

AR
(n/2)

AR = >
(n/2)

AR
(n/2)

™ TInanAR2 elec‘rron

The zero-bias conductance of an NS junction:

NRh
e\

d Number' of channels

GNS —2

charges are transmitte is Andreev reflected as a hole

.. e e it"t T2 T2
R. z‘tDltD+tD|rD|rD|tD+...‘2 _‘ﬁ = (1+|; )2 = (2 E)I' )2
D'D D —Ip
2 ¢ T Lae 2
Gy =2- 5 Z(z—Tn)z <2G, =2 5 Zn:Tn

Averaging with random matrix theory:

n phase shift, 2e? T?
} destructive Gy =2"— Z—”z = G,
h \7(-T,)

interferencel! —T,

N Note: without the phase shift of ,i" 6ys=26y would comel!

The probability that an incoming e



Proximity eff. 2.: reflectionless tunneling

T.M. Klapwijk, Journal of Superconductivity 17, 593 (2004), C.W.J. Beenakker, Rev. Mod.
Phys. 69, 731 (1997)

1

If the NS interface has small transmission,
tns< <1, the amplitude of Andreev reflection is

even smaller, r,~ 2,5 (2 electron charges cross the

barrier). However, the electron can be reflected = 08

0.9 B

back to the NS interface by the disordered &

region several times, thus it can repeatedly o 0.7

attempt the Andreev reflection. 06

The zero-bias 262 ) L7
conductance of G, =2-— NR,, 05— 0 1 =z
an NS junction: h V (mV)

A. Kastalsky et al. Phys. Rev.
Lett. 67, 3026 (1991)

" 2
For a single process: R, = tDrAtD‘ =R, TS =T To

The conductance is

Summing up the leH'ip|€ attempts: (the phase is same for alll) considerqbly lar'ger'!
* 2 2
tDrAtD TNSTD

~y

* * % * 2
Rie = [tolaty Fios oAl Misto +..{ =

\\4 1-TshsTols (TNS +T5 =T Tp )2
\ AR R R R R RN RRRERRRERRRERRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRERDNI]
4 General statement: (Beenakker, Rev. Mod. Phys. 69, 731 (1997))
h
class __ -1 -2

R e (03 + 27 . Rus (B=0,V =0) ~ Ry™
/ class h B ns = A R (B>0V =0)~ Relas

N T (gN +TNS) NS ’ "




Proximity effects 3.: ferromagnetic electrode
A.L. Buzdin, Rev. Mod. Phys. 77 935 (2005)

A Cooper pair in a superconductor consists of ¥ @
two electrons with opposite spins and momenta. —J
In a ferromagnet the up-spin electron decreases g N

its energy by pyH.¢¢, while the downspin

electron energy increases by the same value. To
compensate this energy variation, the up-spin electron
increases its kinetic energy, while the down-spin electron
decreases its kinetic energy.

v

4 HaHer _y ®

1 /
%*‘ i:Z 2pgH —,

Uy H Oscillation of the order parameter



S, I s, ‘ Josephson effect (traditional approach) ‘

_ [, el _ el¥  Macroscopic wave functions. |y|2~ particle density (p)
P V> P2 + phase difference (8=¢,—¢,)

We apply a voltage of eV on the junction!

dy, 2eV : 1 . is: | 2eV i :
ih—L = +Ty, = il —— pe' +./pe%ig |[==—— . /pe*+T.p,e"%
qt 5 41 ¥, [2\/;1 L1 L1 ¢1J 5 P £>
L dy 2eV
ih——2 =— +Ty, =
dt 5 ¥V, W,

Dividing by e'¢! (or ei*?) and writing the equations separately for the real and imaginary part:

2T . . 2T .
p1=7\/p1p2 sina, Po==—PP sino

qfilz—I P2 coss— 22V ¢, =— T 1P coss+ 22V
h\ opy 2" n P>
The current is proportional fo dp,/dt=-dp,/dt: | =1,8INS
20\ Josephson

Subtracting the equations for the phase: S= = = o(t)=9,+ IV (t)dt| equations



S, I 5 ‘ Josephson effect (traditional approach) ‘
o= ¢2 _¢1

Applying a constant bias voltage:

| = 1.sinl 5. + ﬂ An AC current with o=2eV/h is flowing.
0 0 The DC current averages to zero.

At zero bias voltage a maximal suppercurrent of I, can flow between the two sides!

Voltage biased junction: Current biased junction:
1 1 /Swi‘rching at the critical current!
e B * Dy
'2A //,, eV '2A ,//, eV
2A 2A
- - -
Let us superimpose an AC _ B 2V, 2eV, .
(microwave) voltage on a DC voltage! V() =Vo+Vic0s et = o(t) =0 + A tF h oo sin ot
: 2eV,, 2eV, . : 2eV, 2eV, 2eV
| =1 sin| § + —2t+—=-Lsinat |~ | =1 sin| &, +1 ——sm(a)t)co{50+ °tj:
h h o h h o h

:|Osin(5o Zehvj |%2V—( in(a)t— 0 2;\/0 0)+sin(a)t+5o 2th D
)

At Vy=thw/2e a DC current will flow!

If we would expand in higher order, we would get that DC current can flow at:  \/ _ 4 hao-n
where n is an integer 0 2e




S, I S ‘ Shapiro steps, SQUID

Shapiro resonances at vol’rage and current bias:

‘|eV— I

/ s
2a] | 28 el
| 2A

)1 Jf¢1 2A

v

Superconducting quantum interferometer device (SQUID):

Two Josephson junctions in parallel in a "loop" geometry. The loop encloses a magnetic flux of ©

1 The superconductor have a well-defined phase at very position. -> The

A g  Pase difference between A and B is constant for all ‘rrajec‘rories.

2
2 (¢B_¢A)1:51+%e_!‘AdS = (¢B_¢A) =0, +_IAdS
()

e e = 5, - 5_—§Ad — o222
Let us take: O, = & +£‘D, 52=50—%CD h D,

| =1, +1, = 1,[sin(8, + 2®/ h)+sin(5, — 2D/ 1)| = 21, sin &, cosed/ 7)
| ax = 21 |cos(e®/ 72)

The maximal value of the critical current is tuned by the magnetic flux:



| Andreev bound states in a short SNS junction with phase bias

Single channel contact with perfect transmission:

- |Alexp(¢)

N, S; - |Alexp(¢r)

1
_¢L _|_arccoiE /|A| << ;> ¢R + arCCO<E /|A|)
= _(De

The condition for the bound state: ¢k —@ + ZaI’CCOS(E /‘A‘)Z N2z =

Single channel contact with arbitrary transmission:

Barrier with transmission t

The electron-hole par can bounce back
and forth in the normal region.

If the aquired phase is n2n
(constructive interference) a bound
state is formed.

E. =+Acods5/2)
—
O=¢—q

Normal scattering for the electrons:

uEUt f_ Ir
ugut = t

Sl

in

t ) u
—ir Ug

in

t,r arereal,

' t=r,r’=1-7

in
uL
in

Ug

out
Vi -

Normal scattering for holes:

Andreev reflection at the left:

Andreev

reflection at the right:
in
Vi _
(UL”j )

|

These can be combined to: (

v _(a(E,gﬁL) 0 j u™
ur) L0 a(E,—¢g) v )
uL”] Y (u[‘] _ (a(E1_¢L)
us ) —\ug ) T 0

The condition to get nonzero solution: det(M —::|-)= 0=

a(E, 4) 0 j(uﬁm
a(E,—¢) \ v
0

0
o AE4)
a(E1_¢R) - 0

E, = +Aly1-zsin?(5/2)

0

js
a(E, ) >




Current - phase relation (V=0, phase biased junction) |

=23, ,f(5.,)
Reminder: calculation of the current ina 1D conductor: * | 4 ko ! (ko
In an Andreev bound state a singly occupied energy state :> | = E
is considered, which carries 2e charge: L

The velocity can be obtainedas: V=0E/0p As E=f(p—2eA) = OE/op= —(8E /aA)/ 2e

— | = 1 6E However, A and the superconducting phase, ¢ are not invariant for a gauge
|_ 8A transformation. The energy must be a function of a gauge invariant function of A and ¢.
A=A+Vy = ¢=¢+2eylh = V@—2eAlh is the proper gauge invariant quantity
2e ok 2e 0B
E=g(Vg—2eAlh) = OE/0A=— = 1(9) =
g(Ve ) Y 5 35
——
(-4 )/ L
01 I 2n Current phase relation for the occupied
E, =+ A‘\/l zsin (5/ 2) E®) 5 (negative energy) Andreev bound state:
7=0.5 .
E(5) B =099 |1(5)= e‘A‘ sino
o~ o 21 \J1-7sin?(512)
0 2AV1-7 e
T ) For a tunnel junction (w<<1):
0 .
A - nvn 0 ‘ ‘ We get back the
1(5) = TS'” O|  Josephson relation!




Finite bias voltage ‘

2e
At finite DC bias voltage the phasedifference is linearly increasing by time: o(t)=0,+ ;V -1

If we plug it to the current phase relationship of the occupied Anddreev bound statewe get an
alternating current averagong out to zero. e‘ A‘ rsin 5(,[)

17(6(1)) =

1-(5)) =0
2h \[1-7sin®(5(t)/2) :f ),

However, at finite bias there is a finite probability for transition L is an odd function of the phase

to the excited Andreev bound state (Landau - Zener transition). A—7)
-7
4 Transition probability: P, =exp —7r———=
eV
..,,_.“.. “‘..,....;)I/
0 7Z'/ 2:7[ R 5 S 5
—A E_
If the transition I"if 0O<S<r
occurs the current |~ = ..
is written as: 1"if r<d<2rx

The total current is:  1(V,t) =(1—P,(V))- 1 (5(t))+ P, (V)-17(5(t))

4 eA AL~
The time averaged current is: IDC=<I (V't)> ~P, (V) °<I%(5)>5 B ;;_hex{_ﬂ%}



| A more complete descrition at finite bias : Multiple Andreev Reflections

At finite bias the electrons and holes gain or loose an energy of eV when they

e cross the barrier. We start a quasiparticle with E<-A from the left side. I't
——>—>  gains an energy eV, but if E+eV<A it can only be Andreev reflected as a hole.
1ev Going backward the hole gains an energy of eV, and so on. Finally the energy
| will increase above +A and a quasiparticle can leave to the electrodes.
[II ' f The amplitude of the incoming  The Andreev reflection amplitude: (¢=0, it is
ev | quasiparticle: > included in the timedependence!)
f a J(B)= \/1_ ACE) o =M(e=E+2neV,¢=0)
eV Wavefunctions at the left and right side of the barrier:
o—»l: ik, X —ike X |y —i(E+2neV)t/n
e Z((rA,ZnVL,Zn +J (E)é‘nok + uL,2ne %
l//L(X) — " ( ik ik ;
— r U e—l n X Iy el WX W—1(E+2neV)t/n
A2nYL,2 L,2
E+(2n+1eV=pl—— Zn: n-L2n "
PORY; —iky X ik, X |—i(E+(2n+1)eV)t/n
A a” L2n Z (rA,2n+1VR,2n+1e + Ug 2na€ )9
Lan —> e=—="o== E + 2neV (x)=| "
r,,.u — > — Yr ik, x —ik x)e_i(E+(2n+1)eV)t/h
AznV,_LZZ: — Z(rA,2n+1uR,2n+1e "+ Vo€
— Ur 2n1 :
= (2n 1)eV —— «— 50 1Vron 1 Scattering on the barrier:

V
: — R,2n-1
\rAZn luR 2n-1 uL 2n — S r-A2nVL 2n ( L,2n j [ A2n L,2n J
E .—> uR,2n+1 a rA 2n+1VR 2n+1 R ,2n-1 A2n 1UR 2n-1
L _ R
N

L 2n ‘UL 2n

.
The DC current: DC(V)— |:V__IdE(‘](E)rAO(VLO+VLO) (1+‘rA2n



Multiple Andreev Reflections - qualitative picture

*If eV>2A the quasiparticle started from the left
side gains enough energy to reach an empty
qausiparticle state on the right side. In this process
a single electron charge is transmitted with
probability .

If eV>A single qausiparticle transmission is
prohibited, but with a single Andreev reflection the
charge transfer is already possible. In this process
2e charges are transmitted with probability of 12
(the carriers cross twice the barrier)

At eV>2A/n an nth process with a charge transfer
of ne and a probability t" becomes available

Accordingly at the I-V curve shows singularities at
eV=2A/n.

*If we have a junction with a few conductance
channels all the tfransmission probabilities can be
determined by placing the junction between
superconducting electrodes and fitting the "subgap"
structures in the I-V curve.
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‘ Measurement of the current-phase relation

Josephson . Single atom _ _ _ _ _ _ _ _ - - - -
Jjunction Al contact | cuip AT 20mK
\ - I
-5 : 5
.\ | {t'}
‘ > | Od’ext
/ I

To know the transmission probabilities of the AC the subgap
structures must be measured in the I-V curve. This is done with a
voltage biased measurement. In principle the DC current of the JJ
should be zero at finite Dc bias, thus the I-V curve would come
purely from the AC. In reality the JJ also has structures in the I-
V curve due to interferences with the environment. The

I-V curve of the JJ can be separately measured by completely

The device is an "atomic
SQUID" (ASQUID), i.e.an SC
atomic contact (AC) and a
Josephson junction (JJ) in
parallel. The critical current is
much larger for the JJ than

for the AC. breaking the junction.
400 IAC(V): IASQUID (\/)_IJJ (V)
80
200 3 K\/t 60-_
2 | . ] z | et After subtracting the I-V
E O — i sl S (7 = 10.994,0.13) curve of the JJ from that of

the ASQUID the transmission
V) e probabilities of the AC can be
...-.....I.....-.'...l.....,....... ) de"'el"mlned

H 1 1
-500 -300 -100 100 300 500 0 100 200 300

V (uV) V (uV)




| Measurement of the current-phase relation

v Bl 56 Q85)5 The phase difference on the atomic contact is: 6 =y + @/ D,

At zero temperature the JJ switches out of its zero ¢

bias state at y=n/2 (at a critical current I,), |0 0 | /2
therefore the critical current of the ASQUID is: ASQUID (@) =1+ 1 ((0+7T )

I.e. the critical current of the JJ is modulated by the current phase relation of the AC.

I.e. the critical current of the JJ is modulated by the current phase relation of the AC.
In experiment we measure the mean switching current instead of the critical current, which is a
thermally activated stochastic variable. Short current pulses are applied on the sample and the
distribution of the switching current is measured.

ASQUID (p)=13 + IAC((P"‘ 77/2)

\The average value of the JJ switching current can be independently measured with on aopen AC.
The such determined current-phase relation shows remarkable

ISN

- (r} = (0.969,0.137} agreement with the theory:
i LOW TRANSMISSION HIGH TRANSMISSION
Ny y [} ={062022,0.07} {r,) = {0.993,0.14)

40 1. f- T 0. cur'r-ent
| iphcitse rel.

- swn‘chmg Theor'y
40— with- Teff-126ml(

-7 T —1t 0 s

(p+11:/2 Q+m/2




| Direct spectroscopic measurement of Andreev bound states

nanotube

Flux @ controlled with a coil
A carbon nanotube is placed in a superconducting loop

LRSS b tunnel probe  as a Josephson junction. At the middle of the nanotube
a superconducting tunnel probe is placed. The SC loop
is grounded, and the voltage on the tunnel probe can be
varied. The I-V curve builds upt form the Fermi
functions, the known known density of states of the
tunnel probe and the unknown DOS of the nanotube.

D

eV 1
' | -4

L~ -7 3 5:
o <
= @

In the density of states four discrete states can be w o)

observed showing a periodic modulation with the phase 8

difference (~flux) -> a fwo pairs of Andreev bound

states! ; : . : : .
3?7r -7 _g 0 0 2 =«
g (mod2r) DOS (A.U.)



Direct spectroscopic measurement of Andreev bound states

Changing the gate voltage the energy levels in the nanotube can be tuned. Some features can be modelled
as a single QDOT in the tube with two spin-split levels. Assuming double quantum dots all the observed

features can be described -> new spectroscopic tool!
A

left  » dot1  dot2 4  Might
electrode

A electrode

e;—e;= 0.25 A W e—e;=0.5A

¢
/
;

'/

i

E (peV)
DOS (A.U.)

E/A

(0] 5 S (0] 5 (o]
ng(ETﬂ;)/ZA V,OC(ET+E¢)/2A Vgoc(£1-+€,,,)/2A



Proximity effects 4.: SNS junction
(H. le Sueur, P. Joyez, H. Pothier, C. Urbina , D. Esteve - Saclay)

Perform local spectroscopy

iati - S lectronic pai N |'S
The variation of the DOSin =~ = 73 ‘Tiomalmes : ~
a short wire between phase o

. . (D)
biased SC electrodes is D)
measur‘ed WlTh a Combined possible interferences [aD)

STM + AFM SeTUp. © @ controlled with § =@, - ¢, @

tunnel current
measurement

In the normal region usually a proximity
induced minigap is observed near zero
bias. However, at a phase difference
d=n the superconducting correlations
are suppressed due to interference
effect.

bulk S

—fit 65mK

dl/dV (nogrhalizzd)

dl/dV (normalized)

0.02 i = J0.02

: : 0.00 L 1 L S L ' - 10.00
The density of states in 500 100 0 100 200

the bulk SC electrode: 0

. . . " . .
400 -300 200 -100 0 100 200 300 400
V(v)




