
Chapter 11

Topological Semimetals

*Short summary for online
In a lattice model for a d dimensional topological insulator, transitions between

topological and trivial regimes can be induced by tuning some parameter λ . We can
promote this parameter to a momentum, and thus obtain a d + 1 dimensional lattice
model. This is will be a topological semimetal, also called 0-gap insulator, where
the bands touch at separated points. The band touching points are called Weyl nodes,
they carry a topological charge, and therefore are topologically protected: continuous
changes of parameters can move them, but cannot open a gap. To transition to an insu-
lator, all Weyl nodes have to fuse with other nodes with opposite charge. Topological
semimetals also have surface states, whose density depends on the orientation of the
surface with respect to the crystallographic axis.

11.1 Coupling SSH Chains for a Two-dimensional Weak
Topological Insulator

We construct a two-dimensional chiral symmetric lattice model by connecting several
SSH chains to each other through nearest-neighbor hopping. The interchain hopping
amplitudes wy connect sites on opposite sublattices, so chiral symmetry is respected.
As shown in Fig. 11.1, we obtain a so-called brick-wall lattice, rotated by 45 degrees.

The corresponding bulk momentum-space Hamiltonian reads,

HC2D(k) =
(

0 v+wxe−ikx +wye−iky

v+wxeikx +wyeiky 0

)
. (11.1)

Here we used v for the intracell hopping amplitudes, and wx for the hopping along the
chains. Expressed in terms of the Pauli matrices, this reads,

ĤC2D(k) = (v+wx coskx +wy cosky)σ̂x +(wx sinkx +wy sinky)σ̂y. (11.2)

The system has chiral symmetry, inherited from the SSH chains, because of the
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Figure 11.1: Geometry of the model. Filled (empty) circles are sites on sublattice
A (B), each hosting a single state. They are grouped into unit cells, one of which is
indicated by a dotted line. The intracell hopping amplitudes v are shown in thick lines,
the intercell hopping amplitudes along the x and y axes, wx and wy, are shown is thin
and dashed lines. The left and right edge regions are indicated by blue and red shaded
background.

way we introduced with the interchain hoppings.

Chiral symmetry : σ̂zĤC2D(k)σ̂z =−ĤC2D(k). (11.3)

It also has inversion symmetry and time-reversal symmetry,

Inversion symmetry : σ̂xĤC2D(k)σ̂x = ĤC2D(−k); (11.4)

Time-reversal symmetry : ĤC2D(k) = Ĥ∗C2D(−k). (11.5)

For the properties we focus on now, the symmetries besides chiral symmetry are not
important. They can be broken, e.g., by making the intracell hopping complex, which
modifies Eq. (11.2) by an extra term Im(v)σ̂y.

11.1.1 Weak Topological Insulator
We expect interesting physics if the two-dimensional model is composed of topological
SSH chains (wx > v) that are weakly coupled, wy� wx,v. We then have what is called
a weak topological insulator: a two-dimensional insulator with a weak topological
invariant, the ky-independent winding number along the kx axis.

A weak topological insulator has protected edge states, as can be understood by
treating the interchain hopping wy as a perturbation. These edge states can be seen on
a numerical example shown in Fig. 11.2. Consider a straight boundary at some angle
α with the x axis. For wy = 0, we have a zero-energy eigenstate for each chain that
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Figure 11.2: Dispersion relation of a weak topological insulator, obtained by coupling
topological SSH chains (v = 1, wx = 5/3), with interchain hopping wy = 1/3. Left:
bulk bands. Middle and Right: dispersion relations at an edge along x and y. Large
(red) dots indicate edge states (whose wavefunction has over 40% weight within the
first 4 unit cells of the total of 15 unit cells). These edge states only show up for a cut
along y.

ends at the boundary, all of them on sublattice A (B). The linear density of these zero
energy states is sinα . When we turn on the interchain hopping wy, the energy of these
states is topologically protected in the same way as for a single SSH chain: To move
away from zero energy, they would need partners on the other sublattice, but no partner
is available this side of the bulk. Although the edge states are at zero energy, they are
nondispersive, and hence do not take part in conduction.

11.2 Transition from Trivial to Weak Topological Insu-
lator is Broadened: Topological Semimetal

Consider how the two-dimensional chiral symmetric model can be tuned using the
intercell hopping along the chains, wx, from topologically trivial to a weak topological
insulator. In the case of no interchain hopping, wy = 0, we have a trivial insulator with
wx < v, and a weak topological one with wx > v. There is a sudden transition from
trivial to weak topological insulator at wx = v, when the gap closes at kx = π , which
corresponds to a line spanning the two-dimensional Brillouin zone. We will see that in
the presence of an interchain hopping wy, this transition is broadened. The gap closes
only at isolated momenta, the so-called nodes, which traverse the Brillouin zone as the
control parameter drives the system through the transition.

To build on our understanding of the topology in the SSH model, we can demote ky
to a parameter, much in the same way as we did when we connected the Qi-Wu-Zhang
model to the Thouless charge pump. Looking at the bulk Hamiltonian in this way,
we have a continuous set of SSH models, with complex intracell hopping parameter
vSSH(ky) = v+wy cosky + iwy sinky, and intercell hopping wSSH(ky) = wx. The corre-
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Figure 11.3: The curve on the dx − dy plane, traced by the bulk Hamiltonian
ĤC2D(kx,ky), at a fixed ky, as kx is tuned across the Brillouin zone, can be trivial (left,
winding number 0), or topological (right, winding number 1). If, as in the example
shown, none of |v|, |wx|, and

∣∣wy
∣∣ is bigger than sum of the other two, for some value

of ky, we will have the trivial, for others, the topological case. We then must have an
intermediate value of ky where the gap closes: a node.

sponding curves in the dx−dy plane, as illustrated in Fig. 11.3, are circles of radius wx,
whose center is at (v+wy cosky,wy sinky). Thus, as we tune ky, the center of the circle
is taken on a circle of radius wy around (v,0). If, as in the example shown, none of |v|,
|wx|, and

∣∣wy
∣∣ is bigger than sum of the other two, for some value of ky, we will have

the trivial, for others, the topological case. We then must have two values of (ky,kx)
where the gap closes: the nodes. We have

wx < v−wy : Trivial
v−wy < wx < v+wy : Topological semimetal
v+wy < wx : Weak topological.

See Exercise 11.8.
In the topological semimetal case we have isolated points in the Brillouin zone

where the gap closes. This is all quite natural when describing the model as a set of
1-dimensional chiral symmetric topological insulators, but in the full 2D model, it can
appear strange at first sight. We need to investigate these gap closing points further.

11.2.1 Gap closing points
In the topological semimetal phase of a two-band two-dimensional model, the bulk is
not fully gapped: the gap closes at isolated points in the Brillouin zone, the so-called
nodes k. The nodes are the solutions of the equations,

dx(kx,ky) = 0; and dy(kx,ky) = 0. (11.6)

These are two equations for two variables kx and ky, so we expect only isolated, point-
like solutions, if any.

Continuously varying the parameters, each isolated pointlike node will move con-
tinuously along a path in the Brillouin zone. For our specific model of coupled SSH
chains, we can find these paths. The gap closing requirements read

−v = wx cosKx +wy cosKy; wx sinKx =−wy sinKy, (11.7)
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Figure 11.4: Paths of the nodes in the Brillouin zone. Left: v = 1.,wy = 1/3, tune wx.
Right: v = 1.,wy = 5/3, tune wx.

and can be solved as

wx =
√
(v+wy cosKy)2 +w2

y sin2 Ky; (11.8)

Kx = atan2(−wy sinKy,−v−wy cosKy), (11.9)

using the atan2 function, which returns φ ∈ (−π,π], if supplied with arguments asinφ ,
acosφ for any a > 0.

Using a parameter, e.g., wx, to tune the system across a broadened topological phase
transition, we find that nodes are first born pairwise, then driven in opposite directions
in the Brillouin zone, then annihilate pairwise. Examples with v = 1, wy = 1/3, and
v = 1, wy = 5/3, are shown in Fig. 11.4. In our two-dimensional model this follows
from inversion symmetry: nodes must come in inversion symmetric pairs of (Kx,Ky)↔
(−Kx,−Ky), and

If v > wy : v−wy ≤ wx ≤ v+wy; M→ Xx; (11.10)
If v < wy : wy− v≤ wx ≤ v+wy; Xy→ Xx. (11.11)

However, even if inversion symmetry is broken, nodes can only be born and annihilated
pairwise. As we show next, this has a deeper, topological reason.

11.3 Topological Charge of Nodes

The nodes in the topological semimetal, i.e., the isolated pointlike gap closing points,
carry a topological charge, and are hence topologically protected. We show this first
for the two-band model, and then generalize.
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11.3.1 Two-band Model: Charge is Winding of d Around Node
Since our two-dimensional semimetal is a two-band model, we can gain more insight
into the nature of the nodes by taking a look at the ~d field, defined by Ĥ(kx,ky)= ~d(k)σ̂ .
An example for wx = wy = v = 1 is shown in Fig. 11.5. Here, the two nodes are at
Kx = −Ky = ±2π/3, and you can see that the d field winds around these points. We
can put the calculation into a convenient form using

d(k) = d(k)cosφ(k)x̃+d(k)sinφ(k)ỹ, (11.12)

where x̃ and ỹ are unit vectors along the two axes.
Put a discrete lattice on the Brillouin zone. We assign numbers to the vertices,

edges, and plaquettes of the lattice, as

vertex ka : φ(ka) = atan2(dx(ka),dy(ka)); (11.13a)

edge ka→ kb : φab = arg
(

eiφ(kb)−iφ(ka)
)

; (11.13b)

plaquette p : Qp =
1

2π
(φab +φbc +φcd +φda) , (11.13c)

where the plaquette p has boundary a→ b→ c→ d→ a. The quantity Qp ∈ Z counts
the vorticity of the vector field d in the plaquette p.

A discrete Stokes theorem, for a disk S composed of plaquettes, reads

∑
(ab)∈∂S

φab = 2π ∑
p∈S

Qp. (11.14)

It can be proven by just rearranging the sums on the right-hand-side. The discrete
Stokes theorem has two important consequences.

Jump in weak topoogical invariant happens when ky = Ky.
Total topological charge has to be 0. This is because the quantities we defined in

the Brillouin zone are all periodic.

Continuum Limit

We can put this in a more convenient form by introducing a vector field A(kx,ky), which
is in some sense a gradient of φ(kx,ky). This is easiest to define using square plaquettes
(can be done for plaquettes of arbitrary shape), with corners

ka = (kx−δk/2,ky−δk/2); kb = (kx +δk/2,ky−δk/2);
kc = (kx +δk/2,ky +δk/2); kd = (kx−δk/2,ky +δk/2).

The definition reads,

A(kx,ky) =
φab +φdc

2δk
x̃ +

φad +φbc

2δk
ỹ. (11.15)

The vorticity Qp corresponds to the flux of the curl of the vector field A on the plaquette
p.
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Figure 11.5: Brillouin zone, with d vectors. v = wx = wy = 1.

The Stokes theorem above reads, for a disk S with boundary ∂S ,∮
∂S

Ads =
∫

S
∇×Ad2S (11.16)

Since A is a gradient, its curl vanishes, except at points where it is not well defined.

Linearizing Around the Nodes: Charge is Determinant

Two-band case, linearized around a Weyl node K, we have, using the small distance
p = k−K,

ĤC2D ≈
(

px py
)(

vxx vxy
vyx vyy

)
︸ ︷︷ ︸

v

(
σ̂x
σ̂y

)
; (11.17)

vax =−wa sinKa; vay = wa cosKa for a ∈ {x,y}. (11.18)

For the Hamiltonian to be Hermitian, the matrix v of coefficients must be real.
We can map how the vector field d(p) winds around the node by solving the lin-

earized equations for dx = 0 and dy = 0:

dx = 0 : py =−
vxx

vyx
px; dy = 0 : py =−

vxy

vyy
px. (11.19)

The winding number is then found to be

ν = signdetv. (11.20)
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11.3.2 More bands: Charge is winding of det h around node

For topological semimetals with more than 2 bands, we need to generalize the formulas
above that relied explicitly on the vector d. Before we do that, we remark that we could
still use the 2-band formulas in the vicinity of each node if only two energy levels are
intersecting there.

To build more general formulas, we use chiral symmetry of the Hamiltonian. For
the matrix of the bulk momentum-space Hamiltonian this reads,

H(kx,ky) =

(
0 h(kx,ky)

h†(kx,ky) 0

)
. (11.21)

We can apply the same formalism as before, but instead of the phase of the vector
d, use the phase of the complex number deth(k).

vertex ka : deth(ka); (11.22a)

edge ka→ kb : φab = arg
(

deth(kb)

deth(ka)

)
; (11.22b)

plaquette p : Qp =
1

2π
(φab +φbc +φcd +φda) , (11.22c)

11.4 Fermi Arcs – Edge States in Part of the Brillouin
Zone

Topological semimetals can have edge states, which occupy only a part of the “edge
Brilouin zone”.

This is best illustrated through a concrete example, obtained by tuning our 2D
model from trivial to weak topological insulator, and plotting dispersions relations of
a system with edges, as in Fig. 11.6. Notice first how bulk nodes appear, separate, and
then meet and annihilate again. Notice also that there is a line of edge states for both
edge orientations, which connects the bulk nodes. Focusing on the edge along y (upper
row), the we can demote momentum ky to a parameter, and the topological semimetal
is seen as a set of 1D chiral symmetric chains, each with its label ky. Some, of these
chains are topological, some of them trivial. For the ky’s of topological chains, we have
to have edge states.

From this example we can understand that a flat line of edge states that covers only
part of the edge Brillouin Zone, terminated by the bulk nodes, is a generic feature of
topological semimetals.

There are some remarks to be made regarding the robustness of these edge states
protected by chiral symmetry. At the edge, the natural boundary condition might still
respect chiral symmetry in the sense of only having nearest-neighbour coupling, but
the integrity of unit cells is often not maintained. This means that these edge states are
not as robust as those of strong topological insulators.
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Figure 11.6: Transition from trivial insulator to a weak topological insu-
lator, obtained by tuning wx. Interchain coupling is wy = 1/3, and pa-
rameters are set so that wx + wy + v = 2. From left to right, v,wx =
(1.1,0.566),(0.95,0.716),(5/6,5/6),(0.716,0.95),(0.566,1.1). Top row: cut along
y. Bottom row: cut along x. Large (red) dots indicate edge states (whose wavefunction
has over 40% weight within the first 6 unit cells of the total of 30 unit cells)
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11.5 Three-dimensional Weak Topological Insulators:
Coupling QWZ Layers

We now go one dimension higher, and obtain a toy model for a three-dimensional
(3D) weak topological insulator by coupling layers of a two-dimensional topological
insulator. We will see the same steps as in the chiral symmetric 2-dimensional case
above: weak topological phases can be defined, the transition from trivial to weak
topological is broadened, and the intermediate case is a topological semimetal. The
important difference is that for the 3D case, we don’t need to rely on any symmetry,
and therefore the consequences will be more robust.

We define a 3-dimensional model Hamiltonian by coupling layers of the QWZ
model. The bulk momentum-space Hamiltonian reads,

ĤWeyl(k) = sinkxσ̂x + sinkyσ̂y +(u+wcoskz + coskx + cosky) σ̂z. (11.23)

This model reduces to the one cited in Vishwanath by setting w = 1. We do not have
chiral symmetry here, neither time-reversal symmetry, but we do have inversion sym-
metry and mirror symmetry along z:

Inversion symmetry : σ̂zĤWeyl(k)σ̂z = ĤWeyl(−k); (11.24)

Mirror symmetry : ĤWeyl(kx,ky,kz) = ĤWeyl(kx,ky,−kz). (11.25)

Neither inversion symmetry nor mirror symmetry play any important role here, they
can be broken. For example, we could break inversion symmetry with w′ sin(kz)σ̂x +
w′ cos(kz)σ̂y.

This model is a weak Chern insulator. The set of bulk topological invariants are the
Chern numbers Qx,Qy,Qz of slices of the system perpendicular to x,y,z. For example,
Qz is obtained by 1) demoting kz to parameter, 2) setting it to any fixed value, e.g.,
kz = 0, and 3) calculating the Chern number of ĤWeyl(kx,ky,0).

A weak Chern insulator has edge states on clean edges, as predicted by the weak
invariants. These are not (flat bands of) 0-energy states, as in case of the 2-dimensional
chiral weak topological insulator, but rather propagating states.

11.6 Transition from Trivial to Weak Topological Broad-
ened: Topological Semimetals

For the model Hamiltonian composed of a stack of QWZ layers, eq. (11.23), we can
tune the transition from trivial to weak topological insulator via the onsite Zeeman
parameter u.

If the layers are not coupled, w = 0, the transitions happen instantaneously. We
transition from trivial (u <−2) to weak Chern insulator with Q =+1 (−2 < u < 0) at
u = −2, to another weak Chern insulator with Q = −1 (0 < u < 2) at u = 0, to trivial
phase again (u > 2) at u = 2. At the transition points, the bulk gap closes along lines
spanning the whole Brillouin zone.
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Figure 11.7: Brillouin zone, with d vectors. u =−2, v = 0.05.

If the layers are coupled, the transitions broaden and we have an intermediate topo-
logical semimetal phase, much in the same way as in the lower dimensional case. We
can treat the momentum kz as a parameter. The three-dimensional model is then de-
scribed by a torus that is moved periodically in d-space, as the parameter kz is tuned
from −π to π . There will be a broad parameter range where during one cycle at two
values of kz this surface will contain the origin. At these values of kz, the bulk gap
closes at a nodal point, some specific kx,ky,kz. The two nodal points will have some
sort of chirality that is opposite, because of opposite velocity of the surface at the two
values of kz points. More on this later.

In the presence of coupling, each gap closing along the lines at a single u value is
turned into the trajectory of the node, at a finite range of u.

u <−2−w : Trivial;
−2−w < u <−2+w : Semimetal, (0,0,0→±π);
−2+w < u <−w : Weak Chern;
−w < u < w : Semimetal, (0,π,0→±π) and (π,0,0→±π);

w < u < 2−w : Weak Chern;
2−w < u < 2+w : Semimetal, (π,π,0→±π);
2+w < u : Trivial.

Weyl nodes are confined to four columns in the Brillouin zone, kx = 0,π and ky =
0,π , every Weyl node at k comes with its inversion symmetric partner at −k. Breaking
inversion symmetry turns the columns into helical columns.
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11.7 Topologically Protected Nodes: Gap Closing Points

11.7.1 Two-band Model: Nodes are Sources or Sinks of d̃.
We can gain more insight into the nature of the nodes by taking a look at the ~d field.
We can put the calculation into a convenient form using

ĤWeyl(k) = d0(k)σ0 +d(k)σ̂ = E−(k) |u−(k)〉〈u−(k)|+E+(k) |u+(k)〉〈u+(k)| ,
(11.26)

with E−(k) < 0, E+(k) > 0, and 〈u+(k) | u−(k)〉 = 0 for every momentum k. In our
model, d0(k) = 0, and hence, E−(k) =−E+(k), which is important because it puts the
nodes at the Fermi surface for half filling.

We will use a simplified notation:

d̃(k) = d(k)/ |d(k)| ; (11.27)

k = ka : d̃a = d̃(ka); |a〉= |u−(ka)〉 . (11.28)

The main idea of the calculation is best appreciated by starting in the continuum.
In a volume V with surface S = ∂V , we can find the total number of sources/sinks
of the vector field d(k), by calculating the solid angle the vector field d̃ sweeps over as
we scan over the surface.

For the discretization we will need a geometrical formula for the solid angle. We
could do this using

1
2

Ωabc = tan−1

( (
d̃a× d̃b

)
d̃c

1+ d̃ad̃b + d̃ad̃c + d̃bd̃c

)
, (11.29)

but this is a bit cumbersome, and it would restrict us to triangular plaquettes. We can
do something more efficient, by using the knowledge obtained previously that the solid
angle corresponds to the discrete Berry phase,

1
2

Ωabc = Fabc = arg(〈a | b〉〈b | c〉〈c | a〉) , (11.30)

which is valid for plaquettes with any number of nodes on the boundary.
The discretization is obtained as

node a : |a〉 ; (11.31)
edge a→ b : 〈a | b〉 ; (11.32)

plaquette p : Fp = arg ∏
(ab)∈∂ p

〈a | b〉 ; (11.33)

volume element v : Qv =
1

2π
∑

p∈∂v
Fp. (11.34)

We have to pay attention to the proper orientations of the boundaries: for plaquettes
these are counterclockwise, for volume elements, the plaquettes should all be defined
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with normal oriented out from the middle of the volume element. We can plug in the
arguments from the section on the Chern number, and obtain that the quantities Qp are
integers, and they detect the nodes.

A discrete Gauss theorem, for a volume V composed of volume elements,

∑
(p)∈∂V

Fab = ∑
v∈V

Qv. (11.35)

This has two important consequences.
Jump in weak topoogical invariant happens when ky = Ky.
Total topological charge has to be 0. This is because the quantities we defined in

the Brillouin zone are all periodic.

Continuum Limit

We can put this in a more convenient form by introducing a vector field B(kx,ky), the
Berry curvature. This is easiest to define using cubic volume elements (possible for
volume elements of arbitrary shape), with corners

ka =

(
kx−

δk

2
,ky−

δk

2
,kz−

δk

2

)
; kb =

(
kx +

δk

2
,ky−

δk

2
,kz−

δk

2

)
;

kc =

(
kx +

δk

2
,ky +

δk

2
,kz−

δk

2

)
; kd =

(
kx−

δk

2
,ky +

δk

2
,kz−

δk

2

)
;

ke =

(
kx−

δk

2
,ky−

δk

2
,kz +

δk

2

)
; k f =

(
kx +

δk

2
,ky−

δk

2
,kz +

δk

2

)
;

kg =

(
kx +

δk

2
,ky +

δk

2
,kz +

δk

2

)
; kh =

(
kx−

δk

2
,ky +

δk

2
,kz +

δk

2

)
.

The components of the field B are defined using the Chern numbers of the appropriate
plaquettes, calculated so the normals are always along the positive direction, i.e.,

B(kx,ky,kz) =
Fadhe +Fbcg f

2δ 2
k

x̃ +
Fae f b +Fdhgc

2δ 2
k

ỹ +
Fabcd +Fe f gh

2δ 2
k

z̃.

It is easy to show that Qv corresponds to the integral of the divergence of the vector
field B on the volume element v.

The Gauss theorem above reads, for a volume element V with boundary ∂V ,∮
∂V

B(k)d2k =
∫

V
div B(k)d3k (11.36)

Because of the connection between the Chern number and the solid angles,

B = curl d̃. (11.37)

Since B is a curl, its divergence vanishes, except at points where it is not well defined.
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Linearizing Around the Nodes: Charge is Determinant

Two-band case, linearized around a Weyl node K, we have, using the small distance
p = k−K,

Ĥ ≈
(

px py pz
)vxx vxy vxz

vyx vyy vyz
vzx vzy vzz

σ̂x
σ̂y
σ̂z

 ; (11.38)

In general, the matrix v of coefficients is real.
We can map how the vector field d(p) winds around the node, ... The charge of the

node is then found to be

ν = signdetv. (11.39)

11.7.2 General, multiband case

The formulas obtained through linearization also apply to the multiband case. In the
vicinity of each node, only two energy levels are interesting anyway, we can use the
restriction of the Hamiltonian to those levels.

For more general formulas, we can plug in the formulas for Chern number of multi-
band systems.

Ĥ(ka) =
NF

∑
m=1

Em(ka) |am〉〈am|+
Ntot

∑
m=NF+1

Em(ka) |am〉〈am| ; (11.40)

We are interested in the nodes between the NF th and the (NF +1)th energy states. This
is crucial if for all k, we have m≤ NF ⇒ Em(k)≤ 0 and m > NF ⇒ Em(k)≥ 0.

The derivations for the two-band case remain valid, with the replacement 〈a | b〉 →
det M(ab). Put a discrete three-dimensional lattice on the Brillouin zone. We assign
objects to the vertices, edges, plaquettes, and cubes of the lattice,

vertex a : {|a1〉 , |a2〉 , . . . , |aNF 〉};

edge a→ b : detM(ab), with M(ab)
mn = 〈am | bn〉 ;

plaquette p : Fp = arg ∏
(ab)∈∂ p

detM(ab)

volume element v : Qv =
1

2π
∑

p∈∂v
Fp.

11.8 Fermi Arcs on Surface

The edge states exist only in parts of the Brillouin zone: those parts where the weak
Chern number is nonzero. These are the Fermi arcs.
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Figure 11.8: Edge states of a Weyl semimetal. Color: inverse of the localization length
of edge state. Fermi arcs are equipotential lines, shown in thick lines, continuous for
energy E = 0 and above, slashed for negative energy. Spacing between equienergy
lines is 0.2

Problems
Nodes protected by extra symmetries
POSSIBLE EXERCISE: Even if chiral symmetry is broken, these other symmetries
can stabilize the Weyl nodes. This is trivial in two-level systems, how does it work out
in general?

Transition from weak topological
Discuss what happens to the two-dimensional chiral symmetric lattice model, as wx is
tuned from wx = 0 to wx = 10, if v = 1 and wy = 2.

Answer: If we repeat the same process, but with topological chains, v < wy, we
have

If wx < wy− v : Weak topological; (11.41)
If wy− v < wx < v+wy : Semimetal; (11.42)
If v+wy < wx : Weak topological. (11.43)

Paths of nodes when v is tuned
If v is tuned, show that, assuming wy < wx without loss of generality,

wx−wy ≤ v≤ wx +wy; Xy→M (11.44)
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Figure 11.9: Edge states of a Weyl semimetal. Color: inverse of the localization length
of edge state. Fermi arcs are equipotential lines, shown in thick lines, continuous for
energy E = 0 and above, slashed for negative energy. Spacing between equienergy
lines is 0.2


