Chapter 8 Time-reversal symmetric two-dimensional topological insulators – the Bernevig–Hughes–Zhang model

Schematic of the spin-polarized edge channels in a quantum spin Hall insulator.

Anderson localization in 1D

In 1D, even a tiny disorder renders the wavefunctions localized. Hence, disorder transforms a metal into an (Anderson) insulator.

Chapter 6

1D edge of 2D Chern insulator: no localization

Fermi level in gap => edge electrons can't be backscattered => **edge conductor** (quantized conductance)

Qi et al. PRB 2006 1D edge of 2D time-reversal invariant topological insulator: edge states conduct or localize?

Chapter 8

They conduct.

(Fermionic) Time-Reversal Symmetry

usual symmetry: U unitary such that $UHU^{-1} = H$.

chiral symmetry: Γ unitary such that $\Gamma H \Gamma^{-1} = -H$

(fermionic) time-reversal symmetry: \mathcal{T} antiunitary such that $\mathcal{T}^2 = -1$, and $\mathcal{T}H\mathcal{T}^{-1} = H$.

(bosonic) time-reversal symmetry: \mathcal{T} antiunitary such that $\mathcal{T}^2 = +1$, and $\mathcal{T}H\mathcal{T}^{-1} = H$.

... from now on, TRS means fermionic TRS.

Kramers degeneracy in the band structure

Kramers theorem:

Take a Hamiltonian with fermionic time-reversal symmetry \mathcal{T} .

Take an eigenstate $|\psi\rangle$ of H with energy E.

Then, $\mathcal{T} |\psi\rangle$ is also an energy eigenstate with energy E, and $\langle \psi | \mathcal{T} \psi \rangle = 0$.

Consequence for band structures:

In a crystal with fermionic time-reversal symmetry, every band is twofold degenerate at time-reversal-invariant momenta.

BHZ model: edge-state Kramers pairs, robust against time-reversal-invariant perturbation

example: Bernevig-Hughes-Zhang model

 $\hat{H}_{\text{BHZ}}(\mathbf{k}) = \hat{s}_0 \otimes \left[(u + \cos k_x + \cos k_y) \hat{\sigma}_z + \sin k_y \hat{\sigma}_y) \right] + \hat{s}_z \otimes \sin k_x \hat{\sigma}_x + \hat{s}_x \otimes \hat{C},$

 $\hat{H}_{\rm BHZ} = \hat{s}_0 \otimes \left[(u + \cos k_x + \cos k_y) \hat{\sigma}_z + \sin k_x \hat{\sigma}_x \right] + \hat{s}_z \otimes \sin k_y \hat{\sigma}_y + \hat{s}_x \otimes \hat{C}.$

Fig. 8.1 Stripe dispersion relations of the BHZ model, with sublattice potential parameter u = -1.2. Right/left edge states (more than 60% weight on the last/first two columns of unit cells) marked in dark red/light blue. (a): uncoupled layers, $\hat{C} = 0$.

(c): Antisymmetric coupling $\hat{C} = 0.3\sigma_y$ cannot open a gap in the edge

spetrum.

Number parity of edge-state Kramers pairs is a topological invariant

... from now on, topological insulator refers to 2D topological insulator with fermionic time-reversal symmetry

Absence of backscattering

Full transmission through scattering region => absence of localization

Time-reversal invariant momenta (1)

SSH model with nearest-neighbor real-valued hopping

Consider the SSH model with only nearest-neighbor hopping, all hopping amplitudes being real. Does it have time-reversal symmetry?

a) Yes, it has fermionic time-reversal symmetry.

b Yes, it has bosonic time-reversal symmetry.

C Yes, both types.

Edge states and time reversal symmetry (1)

Take a clean QWZ model with Chern number 1. Consider the edge state $|\Psi\rangle$ with a given wave number k.

Then $\mathcal{T} |\Psi\rangle$...

- (a)... is orthogonal to $|\Psi\rangle$, and is an eigenstate of the Hamiltonian with the same energy as $|\Psi\rangle$.
- (b)... is orthogonal to $|\Psi\rangle$, and is an eigenstate of the Hamiltonian which propagates on the other edge.
- (c)... is orthogonal to $|\Psi\rangle$, but it is not an eigenstate of the Hamiltonian.
- (d)... doesn't exist: time reversal can't be applied as the model has no time-reversal symmetry.

Edge states and time reversal symmetry (2)

Take an edge state $|\Psi\rangle$ of a clean topological insulator with a given wave number k. Then $\mathcal{T} |\Psi\rangle$...

- (a)... is orthogonal to $|\Psi\rangle$, and is an eigenstate of the Hamiltonian with the same energy as $|\Psi\rangle$.
- (b)... is orthogonal to $|\Psi\rangle$, and is an eigenstate of the Hamiltonian which propagates on the other edge.
- (c)... is orthogonal to $|\Psi\rangle$, but it is not an eigenstate of the Hamiltonian.
- (d)... is the same as $|\Psi\rangle$, since the system has time-reversal symmetry.

Two-band model with time reversal symmetry

2D two-band lattice models with fermionic time-reversal symmetry \ldots

a)... always have a band gap.

(b) ... never have a band gap.

(c)... might have a band gap.

d ... do not exist.

Edge spectrum of a 2D topological insulator

Each figure shows the edge spectrum of a 2D insulator.

Bulk valence bands are way below, and E_k bulk conduction bands are way above these edge states.

Which edge spectrum belongs to a 2D **topological** insulator?

Scattering in a topological insulator (1)

Consider a long and wide ribbon of a 2D topological insulator, in which each edge hosts a single edge-state Kramers pair. Part of the ribbon is disordered and serves as a scattering region. The whole system is time-reversal symmetric.

What is the dimension of the scattering matrix S describing the scattering region?

Scattering in a topological insulator (2)

Consider a long and wide ribbon of a 2D topological insulator, in which each edge hosts a single edge-state Kramers pair. Part of the ribbon is disordered and serves as a scattering region. The whole system is time-reversal symmetric.

How many nonzero entries are there in the scattering matrix S of the scattering region?

Scattering in a topological insulator (3)

Consider a constriction of a ribbon of a 2D topological insulator, in which each edge hosts a single edge-state Kramers pair. The constriction is disordered and serves as a scattering region. The whole system is time-reversal symmetric.

How many zero entries are guaranteed in the scattering matrix S of the constriction?

