
Adiabatic pumping in a chain
Example: time-dependent Rice-Mele model

Chapter 4

Adiabatic charge pumping, Rice-Mele model

We now apply the Berry phase and the Chern number to show that the periodically
and slowly changing the parameters of a one-dimensional solid, it is possible to
pump particles in it. The number of particles (charge) pumped is an integer per cy-
cle, that is given by a Chern number. Along the way we will introduce important
concepts of edge state branches of the dispersion relation, and bulk–boundary cor-
respondence. Since we are working towards understanding time-independent topo-
logical insulators, this Chapter might seem like a detour. However, bulk–boundary
correspondence of 2-dimensional Chern insulators, at the heart of the theory of topo-
logical insulators, is best understood via a mapping to an adiabatic charge pump.
The concrete system we use in this Chapter is the simplest adiabatic charge pump,
the time-dependent version of the Rice-Mele (RM) model,
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with the staggered onsite potential u, intracell hopping amplitude v, and intercell
hopping amplitude w all assumed to be real and periodic functions of time t. In this
Chapter, we are going to see how, by properly choosing the time sequences, we can
ensure that particles are pumped along the chain.

4.1 Charge pumping in a control freak way

The most straightforward way to operate a charge pump in the Rice-Mele model is
to make sure that the system falls apart at all times to disconnected dimers. This
will happen if at any time either the intercell hopping amplitude w, or the intracell
hopping amplitude v vanishes. We can then use the staggered onsite potential to
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This period, shown in Fig. 4.1 a), is assumed to then be repeated. Note that we
shifted the beginning time of the sequence: now at times t/T = n 2 Z, the Hamil-
tonian is the trivial SSH model, t/T = n+ 1/4, disconnected monomers, at times
t/T = n+1/2, it is the nontrivial SSH model.

The time-dependent bulk momentum-space Hamiltonian reads

Ĥ(k, t) = d(k, t)ŝ = (v(t)+w(t)cosk)ŝx +w(t)sinkŝy +u(t)ŝz, (4.6)

which can be represented graphically as the path of the vector d(k, t) as the quasi-
momentum goes through the Brillouin zone, k : 0 ! 2p , for various fixed values of
time t, as in Fig. 4.1 (b).

Fig. 4.1 The control freak pump sequence in the Rice-Mele model. The sequence is defined via
Eqs. (4.5) and (4.6). (a) Time dependence of the hopping amplitudes v, w and the sublattice po-
tential u. (b) The surface formed by the vector d(k, t) corresponding to the bulk momentum-space
Hamiltonian. The topology of the surface is a torus, but its parts corresponding to t 2 [0,0.25]T
and t 2 [0.75,1]T are infinitely thin and appear as a line due to the vanishing value of w in these
time intervals. (c) Instantaneous spectrum of the Hamiltonian Ĥ(t) of an open chain of N = 10
sites. Red (blue) points represent states that are localized in the rightmost (leftmost) unit cells and
have energies between -1 and 1.
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The Rice-Mele model

The toy model we use in this chapter is the Rice-Mele model, which is the SSH
model of Chapt. 1 with an extra staggered onsite potential. The Hamiltonian for the
Rice-Mele model on a chain of N unit cells reads
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with the staggered onsite potential u, the intracell hopping amplitude v, and intercell
hopping amplitude w all assumed to be real. The matrix of the Hamiltonian for the
Rice-Mele model on a chain of N = 4 sites reads
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3.1 Wannier states in the Rice-Mele model

The bulk energy eigenstates of a band insulator are delocalized over the whole sys-
tem. We use as an example the bulk Hamiltonian of the Rice-Mele model, i.e., the
model on a ring of N unit cells. As in the case of the SSH model, Sect. 1.2, the
energy eigenstates are the plane wave Bloch states,

|Y(k)i= |ki⌦ |u(k)i , (3.3)

with
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We omit the index 1 from the eigenstate for simplicity. The |u(k)i are eigenstates of
the bulk momentum-space Hamiltonian,
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Chapter 1

The Su-Schrieffer-Heeger (SSH) model

We take a hands-on approach and get to know the basic concepts of topological
insulators via a concrete system: the Su-Schrieffer-Heeger (SSH) model describes
spinless fermions hopping on a one-dimensional lattice with staggered hopping am-
plitudes. Using the SSH model, we introduce the concepts of single-particle Hamil-
tonian, the difference between bulk and boundary, chiral symmetry, adiabatic equiv-
alence, topological invariants, and bulk–boundary correspondence.

Fig. 1.1 Geometry of the SSH model. Filled (empty) circles are sites on sublattice A (B), each
hosting a single state. They are grouped into unit cells: the n = 6th cell is circled by a dotted
line. Hopping amplitudes are staggered: intracell hopping v (thin lines) is different from intercell
hopping w (thick lines). The left and right edge regions are indicated by blue and red shaded
background.

1.1 The SSH Hamiltonian

The Su-Schrieffer-Heeger (SSH) model describes electrons hopping on a chain
(one-dimensional lattice), with staggered hopping amplitudes, as shown in Fig. 1.1.
The chain consist of N unit cells, each unit cell hosting two sites, one on sublattice
A, and one on sublattice B. Interactions between the electrons are neglected, and so
the dynamics of each electron is described by a single-particle Hamiltonian, of the
form
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Topological invariant (Chern number)

1. Sit at d = 0.

2. Go to infinity along a straight line.

3. Count the number of intersections with the torus.

Qs to Janos/Laci:

”TRS implies zero chern number.” But if we have TRS, then we have degeneracies, so the Chern number is undefined,

right? Should we say, as a remark, that the Berry curvature is an antisymmetric function of the momentum?

Have you tried playing around with the QHE on a square lattice? How does the bulk spectrum look, for various

”periodic” flux values? How do the edge state look, for various periodic flux values?

I. KEY STATEMENTS

A. 1D chiral-symmetric topological insulators

1. SSH models can be classified topologically, according to their integer winding number as the topological invariant.

2. All ⌫ = 1 long SSH chains have a zero-energy edge at each edge.

3. These edge states remain at zero energy in the presence of disorder, as long as that respects chiral symmetry.

4. SSH chains can be generalized to have higher winding number, and the bulk-boundary correspondence holds in

that case.

5. Generalization to higher-dimensional internal space.

6. Using an SSH chain as a quantum memory.

7. Using an SSH chain as a quantum processor.

B. Chern insulators

1. A nondegenerate band can be characterized by its Chern number.

2. An example for non-zero Chern number is the valence band of the QWZ model.

3. Time-reversal symmetry implies a vanishing Chern number for each band.

4. Bulk-boundary correspondence: the Chern number is the number of protected co-propagating edge states along

an edge.
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This period, shown in Fig. 4.1 a), is assumed to then be repeated. Note that we
shifted the beginning time of the sequence: now at times t/T = n 2 Z, the Hamil-
tonian is the trivial SSH model, t/T = n+ 1/4, disconnected monomers, at times
t/T = n+1/2, it is the nontrivial SSH model.

The time-dependent bulk momentum-space Hamiltonian reads

Ĥ(k, t) = d(k, t)ŝ = (v(t)+w(t)cosk)ŝx +w(t)sinkŝy +u(t)ŝz, (4.6)

which can be represented graphically as the path of the vector d(k, t) as the quasi-
momentum goes through the Brillouin zone, k : 0 ! 2p , for various fixed values of
time t, as in Fig. 4.1 (b).

Fig. 4.1 The control freak pump sequence in the Rice-Mele model. The sequence is defined via
Eqs. (4.5) and (4.6). (a) Time dependence of the hopping amplitudes v, w and the sublattice po-
tential u. (b) The surface formed by the vector d(k, t) corresponding to the bulk momentum-space
Hamiltonian. The topology of the surface is a torus, but its parts corresponding to t 2 [0,0.25]T
and t 2 [0.75,1]T are infinitely thin and appear as a line due to the vanishing value of w in these
time intervals. (c) Instantaneous spectrum of the Hamiltonian Ĥ(t) of an open chain of N = 10
sites. Red (blue) points represent states that are localized in the rightmost (leftmost) unit cells and
have energies between -1 and 1.
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Pumped charge is the Chern number and hence and integer

66 5 Current operator and particle pumping

time integral of the Berry curvature, that is,

Q =�i
1

2p

Z T

0
dt

Z

BZ
dk (∂k hu1(k, t)|∂tu1(k, t)i�∂t hu1(k, t)|∂ku1(k, t)i) . (5.3)

This is the Chern number associated to the ground-state manifold of Ĥ(k, t). As the
latter is an integer, the number of pumped particles is quantized. This result was
discovered by David Thouless [33].

We derive Eq. (5.3) via the following steps. In Sect. 5.1, we consider a generic
time-dependent lattice Hamiltonian, we express the number of particles moving
through a cross section of the lattice using the current operator and the time-evolving
energy eigenstates of the lattice. Then, in Sect. 5.2.2, we provide a description
of the time-evolving energy eigenstates of the lattice in the case of periodic and
quasi-adiabatic time dependence of the lattice Hamiltonian. This allows us to ex-
press the number of pumped particles for quasi-adiabatic time dependence. Finally,
in Sect. 5.3, building on the latter result for quasi-adiabatic pumping, we take the
adiabatic limit and thereby establish the connection between the current, the Berry
curvature, the number of pumped particles, and the Chern number.

5.1 Particle current at a cross section of the lattice

Our aim here is to express the number of particles pumped through a cross sec-
tion of the lattice, assuming that the time evolution of the Bloch states due to the
time-dependence of the Hamiltonian is known. As intermediate steps toward this
end, we derive the real-space current operator and the diagonal matrix elements
of the momentum-space current operator, and establish an important relation be-
tween those diagonal matrix elements and the momentum-space Hamiltonian. For
concreteness, we first discuss these using the example of the Rice-Mele model in-
troduced in the preceding chapter. It is straightforward to generalize the results for
lattice models with an generic internal degree of freedom; the generalized results are
also given below. Finally, we use the relation between the current and the Hamilto-
nian to express the number of pumped particles with the time-evolving states and
the Hamiltonian.

5.1.1 Current operator in the Rice-Mele model

We consider the Rice-Mele model with N � 1 unit cells and periodic boundary
conditions. The real-space bulk Hamiltonian Ĥbulk has the almost the same form as
Eq. (3.1), with the difference that the sum corresponding to intercell hopping runs
up to N, and in accordance with the periodic boundary condition, the unit cell index

Bloch states in valence band

Wannier states

monitoring motion of 
 Wannier-state center

quasi-adiabatic evolution 
of Bloch states

current 
operator
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In words, Eq. (5.42) assures that the stationary state has most of its weight in the
instantaneous ground state |u1(t)i, with a small, ⇠ W ⌧ 1 admixture of the instan-
taneous excited state |u2(t)i. Interestingly, even though this small admixture van-
ishes in the adiabatic limit W ! 0, the corresponding contribution to the number of
pumped particles can give a finite contribution, as the cycle period T goes to infinity
in the adiabatic limit. This will be shown explicitly in the next section.

Finally, we show that this state |ũ1(t)i is indeed stationary. That is proven if we
can prove that |ũ1(T )i is equal to |ũ1(0)i up to a phase factor. This arises as the
consequence of the following fact. If the Berry phase associated to the state |u1i is
g , that is, if |u1(T )i= eig |u1(0)i, then

[∂t |u1(t)i]T = lim
e!0

|u1(T + e)i� |u1(T )i
e

= lim
e!0

eig |u1(e)i� eig |u1(0)i
e

= eig ∂t |u1(0)i . (5.43)

Therefore, the two terms in the square bracket of Eq. (5.42) acquire the same phase
factor eig at the end of the cycle, hence the obtained |ũ1(t)i solution is stationary.

5.3 The pumped current is the Berry curvature

The number of particles pumped through an arbitrary cross section of the one-
dimensional lattice, in the duration T of a quasi-adiabatic cycle, is evaluated com-
bining Eqs. (5.25) and (5.42). We define the momentum- and time-resolved current
of the filled band as

j(1)m+1/2(k, t) =
1
N
hũ1(k, t)|∂kĤ(k, t) |ũ1(k, t)i , (5.44)

and perform the usual substitution 1
N Âk2BZ · · · =

R
BZ

dk
2p . . . , yielding the following

formula for the number of pumped particles:

Q =
Z T

0
dt

Z

BZ

dk
2p

j(1)m+1/2(k, t). (5.45)

In the rest of this section, we show that the momentum- and time-resolved current
is the Berry curvature associated to the filled band, and therefore the number of
pumped particles is the Chern number, which in turn is indeed an integer.

To this end, we insert the result (5.42) to the definition (5.44). The contribution
that incorporates two lower-band wave functions |u1(k, t)i, is finite; however, its
integral over the BZ vanishes, and therefore we disregard it as it does not contribute
to particle pumping. Hence the leading relevant contribution is the one incorporating
one filled-band |u1(k, t)i and one empty-band |u2(k, t)i wavefunction:

j(1)m+1/2(k, t) = i
hu1| [∂kĤ] |u2ihu2|∂t |u1i

E
+ c.c. (5.46)
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can prove that |ũ1(T )i is equal to |ũ1(0)i up to a phase factor. This arises as the
consequence of the following fact. If the Berry phase associated to the state |u1i is
g , that is, if |u1(T )i= eig |u1(0)i, then

[∂t |u1(t)i]T = lim
e!0

|u1(T + e)i� |u1(T )i
e

= lim
e!0

eig |u1(e)i� eig |u1(0)i
e

= eig ∂t |u1(0)i . (5.43)

Therefore, the two terms in the square bracket of Eq. (5.42) acquire the same phase
factor eig at the end of the cycle, hence the obtained |ũ1(t)i solution is stationary.

5.3 The pumped current is the Berry curvature

The number of particles pumped through an arbitrary cross section of the one-
dimensional lattice, in the duration T of a quasi-adiabatic cycle, is evaluated com-
bining Eqs. (5.25) and (5.42). We define the momentum- and time-resolved current
of the filled band as

j(1)m+1/2(k, t) =
1
N
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E
+ c.c. (5.46)

Momentum- and time-resolved current of the filled band:

Pumped charge (Q) per cycle: 
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Making use of the quasi-adiabatic condition

Note that the quasi-adiabatic condition has not been invoked so far; this is the next
step. As mentioned above, the quasi-adiabatic nature of the Hamiltonian suggests
that one of the two stationary states will be close to the instantaneous ground state,
suggesting a1(t)⇠ 1 and a2(t)⇠ W . Furthermore, we know that hu1(t)|∂t |u2(t)i ⇠
W , since variations in |un(t)i become slower as the adiabatic limit is approached.
The latter relation is explicitly demonstrated by the example in Eq. (5.29): if we use
|u1(t)i = (�sin(q/2),cos(q/2))T and |u2(t)i = (cos(q/2),sin(q/2))T with q =
arctan

� 2+cosW t
sinW t

�
, fulfilling the parallel-gauge criterion, we find hu1(t)|∂t |u2(t)i =

�W 1+2cosW t
10+8cosW t .

As we are interested in the quasi-adiabatic case W ⌧ 1, we drop those terms from
(5.34) and (5.36) that are at least second order in W . This results in

ȧ1(t) = 0, (5.37)

ȧ2(t) = �a1(t)hu2(t)|∂t |u1(t)iei
R t

0 dt 0E(t 0). (5.38)

If we assume a1(t = 0) = 1+o(W), then the first equation guarantees that a1(t) =
1+o(W). Then this allows for a further simplification of Eq. (5.38):

ȧ2(t) = �hu2(t)|∂t |u1(t)iei
R t

0 dt 0E(t 0). (5.39)

Solution of the equation of motion

The remaining task is to solve Eq. (5.39) for a2(t). Instead of doing this in a con-
structive fashion, we give the solution a2(t) and prove that it indeed fulfills Eq.
(5.39) up to the desired order. The solution reads

a2(t) = i
hu2(t)|∂t |u1(t)i

Et
ei

R t
0 dt 0E(t 0). (5.40)

First, let us check if it solves the differential equation (5.39):

∂ta2(t) = i
(∂t hu2(t)|∂t |u1(t)i)

Et
ei

R t
0 dt 0E(t 0)� i

(∂tEt)hu2(t)|∂t |u1(t)i
E2

t
ei

R t
0 dt 0E(t 0)

� hu2(t)|∂t |u1(t)iei
R t

0 dt 0E(t 0). (5.41)

The first two terms on the right hand side scale as W 2, whereas the third one scales
as W . Hence we conclude that in the quasi-adiabatic case, Eq. (5.40) is the solu-
tion of Eq. (5.39) we were after. The corresponding solution of the time-dependent
Schrödinger equation (5.30) is constructed using Eqs. (5.31), a1(t) = 1 and (5.38),
and reads

|ũ1(t)i= e�i
R t

0 dt 0E1(t 0)

|u1(t)i+ i

hu2(t)|∂t |u1(t)i
Et

|u2(t)i
�
. (5.42)

Quasi-adiabatic evolution of Bloch-states:
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where the k and t arguments are suppressed for brevity.
Now we use

hu1| [∂kĤ] |u2i= (E1 �E2)h∂ku1|u2i=�E h∂ku1|u2i, (5.47)

which has a straightforward proof using the spectral decomposition Ĥ =E1 |u1ihu1|+
E2 |u2ihu2| of the Hamiltonian and the fact that ∂k hu1|u2i= 0. Therefore,

j(1)m+1/2 =�ih∂ku1|u2ihu2|∂t |u1i+ c.c.. (5.48)

Since we use the parallel-transport gauge, we can replace the projector |u2ihu2| with
unity in the preceding formula, hence the latter can be simplified as

j(1)m+1/2 = �ih∂ku1|∂tu1i+ c.c.=�i(h∂ku1|∂tu1i�h∂tu1|∂ku1i)
= �i(∂k hu1|∂tu1i�∂t hu1|∂ku1i) . (5.49)

This testifies that the momentum- and time-resolved current is indeed the Berry
curvature corresponding to the filled band, and thereby confirms the result promised
in Eq. (5.3).

Fig. 5.2 Time dependence of the current and the number of pumped particles in an adiabatic cycle.

As a straightforward application of our result, we calculate the time dependence
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in Fig. (5.2)a. The number of pumped particles as a function of time is then eval-
uated numerically via Q(t) =

R t
0 dt j(t); the results are shown in Fig. (5.2)b. These

results confirm that the number of particles pumped through the cross section during
the complete cycle is an integer, and is given by the Chern number associated to the
pumping cycle.

Chapter 5

Current operator and particle pumping

In the previous chapter, we described quantized adiabatic pumping of particles in a
one-dimensional lattice in an intuitive and visual fashion, using the concepts of the
control-freak pumping cycle and the time evolution of the Wannier centers. Here,
we provide a more formal description of the same effect. For simplicity, we consider
two-band insulator lattice models with a completely filled lower band, which are
described by a periodically time-dependent bulk momentum-space Hamiltonian of
the form

Ĥ(k, t) = d(k, t) · ŝ , (5.1)

where d(k, t) is a dimensionless three-dimensional vector fulfilling d(k, t)� 1, and
ŝ is the vector of Pauli matrices. This Hamiltonian is periodic both in momentum
and in time, Ĥ(k+2p, t) = Ĥ(k, t +T ) = Ĥ(k, t), where T is the period of the time
dependence of the Hamiltonian. The minimal energy gap between the two eigen-
states of the Hamiltonian is 2. Furthermore, the frequency characterising the peri-
odicity of the Hamiltonian is W ⌘ 2p/T . We call the periodically time-dependent
Hamiltonian quasi-adiabatic, if W ⌧ 1, and the adiabatic limit is defined as W ! 0,
that is, T ! •.

For example, d can be chosen as

d(k, t) =

0

@
v̄+ cosW t + cosk

sink
sinW t

1

A , (5.2)

corresponding to the smoothly modulated Rice-Mele model, see Eq. (4.7) and Eq.
(4.6).

We will denote the eigenstate of Ĥ(k, t) with a lower (higher) energy eigenvalue
as |u1(k, t)i (|u2(k, t)i). With this notation, we can express the central result of this
chapter: the momentum- and time-resolved current carried by the electrons of the
filled band equals the Berry curvature associated to that band. As a consequence,
the number Q of particles pumped through an arbitrary cross section of an infinite
one-dimensional crystal during a complete adiabatic cycle is the momentum- and
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Expectation value 9

Topszig 5

The expectation value of an observable A follows the equation (~ = 1)

d

dt
hÂi = �ih[Â, Ĥ(t)]i,

where hÂi stands for

(a) the mean of the diagonal elements of Â

(b) the expectation value of Â in an eigenstate of Ĥ

(c) the expectation value of Â in an arbitrary  (t)

(d) the expectation value of Â in any solution  (t) of the time-dependent Schrodinger equation
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Particle number in a two-site model

Notes for lecture 5, current operator
(Dated: November 3, 2015)

1. Ehrenfest’s theorem is often stated as
d
dt hAi = �ih[A,H]i.

Here, the average hOi corresponds to ...

a) the arithmetic mean of the diagonal elements of the operator O.

b) the expectation value of O in an arbitrary eigenstate  of the Hamiltonian H.

c) the expectation value of O in an arbitrary state  (t),

d) something else.

2. Consider the two-site system described by the Hamiltonian H = v�x.

The initial state at t = 0 is localized on the left site,  i(t = 0) = (1, 0).

How does the particle number NR(t) on the right site evolve in time?

3. Consider the two-site system described by the Hamiltonian H = v�x.

The initial state at t = 0 is localized on the left site,  i(t = 0) = (1, 0).

How does the current into the right site, jintoR, evolve in time?

4. Consider the time-dependent two-site Hamiltonian H = u(t)�z + v(t)�x.

Which of the operators below represents the influx of particles into site R?

a) �v(t)�x

b) �v(t)�y

c) �iv(t)�y

d) �u(t)�y

5. Consider the adiabatic limit of a pumping cycle in a 1D crystal.

Which statement is true?

In the adiabatic limit,

a) the momentum- and time-resolved current through a cross section approaches zero.

b) the instantaneous current through a cross section approaches zero.

c) the number of particles pumped through a cross section during the whole cycle approaches zero.

d) More than one of the above statements is true.

6. Take the filled lower-energy band of a static,

insulating one-dimensional, two-band lattice model.

Assume a finite number N of unit cells, periodic boundary condition,

and real-valued hopping amplitudes.

Then,

a) the current carried by each occupied Bloch state is zero.

b) the net current carried by the electrons of the filled band is zero.

c) the net current carried by the electrons of the filled band is always finite.

d) the net current carried by the electrons of the filled band can be finite.

7. Take the filled lower-energy band of a static,

insulating one-dimensional, two-band lattice model.

Assume a finite number N of unit cells, periodic boundary condition,

but now allow for complex-valued hopping amplitudes.

Then,

a) the current carried by each occupied Bloch state is zero.

b) the net current carried by the electrons of the filled band is zero.

c) the net current carried by the electrons of the filled band is always finite.

d) the net current carried by the electrons of the filled band can be finite.

Notes for lecture 5, current operator
(Dated: November 3, 2015)

1. Ehrenfest’s theorem is often stated as
d
dt hAi = �ih[A,H]i.

Here, the average hOi corresponds to ...

a) the arithmetic mean of the diagonal elements of the operator O.

b) the expectation value of O in an arbitrary eigenstate  of the Hamiltonian H.

c) the expectation value of O in an arbitrary state  (t),

d) something else.
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3. Consider the two-site system described by the Hamiltonian H = v�x.

The initial state at t = 0 is localized on the left site,  i(t = 0) = (1, 0).

How does the current into the right site, jintoR, evolve in time?

4. Consider the time-dependent two-site Hamiltonian H = u(t)�z + v(t)�x.

Which of the operators below represents the influx of particles into site R?

a) �v(t)�x

b) �v(t)�y

c) �iv(t)�y

d) �u(t)�y

5. Consider the adiabatic limit of a pumping cycle in a 1D crystal.

Which statement is true?

In the adiabatic limit,

a) the momentum- and time-resolved current through a cross section approaches zero.

b) the instantaneous current through a cross section approaches zero.

c) the number of particles pumped through a cross section during the whole cycle approaches zero.

d) More than one of the above statements is true.

6. Take the filled lower-energy band of a static,

insulating one-dimensional, two-band lattice model.

Assume a finite number N of unit cells, periodic boundary condition,

and real-valued hopping amplitudes.

Then,

a) the current carried by each occupied Bloch state is zero.

b) the net current carried by the electrons of the filled band is zero.

c) the net current carried by the electrons of the filled band is always finite.

d) the net current carried by the electrons of the filled band can be finite.

7. Take the filled lower-energy band of a static,

insulating one-dimensional, two-band lattice model.

Assume a finite number N of unit cells, periodic boundary condition,

but now allow for complex-valued hopping amplitudes.

Then,

a) the current carried by each occupied Bloch state is zero.

b) the net current carried by the electrons of the filled band is zero.

c) the net current carried by the electrons of the filled band is always finite.

d) the net current carried by the electrons of the filled band can be finite.
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Notes for lecture 5, current operator
(Dated: November 5, 2015)

1. Ehrenfest’s theorem is often stated as
d
dt hAi = �ih[A,H(t)]i.

Here, the average hOi corresponds to ...

a) the arithmetic mean of the diagonal elements of the operator O.

b) the expectation value of O in an arbitrary eigenstate  of the Hamiltonian H.

c) the expectation value of O in an arbitrary state  (t).

d) something else.

2. Consider the two-site system described by the Hamiltonian H = v�x.

The initial state at t = 0 is localized on the left site,  i(t = 0) = (1, 0).

How does the particle number NR(t) on the right site evolve in time?

L R

3. Consider the two-site system described by the Hamiltonian H = v�x.

The initial state at t = 0 is localized on the left site,  i(t = 0) = (1, 0).

How does the current into the right site, jintoR, evolve in time?

4. Consider the time-dependent two-site Hamiltonian H = u(t)�z + v(t)�x.

Which of the operators below represents the influx of particles into site R?

a) �v(t)�x

b) �v(t)�y

c) �iv(t)�y

d) �u(t)�y

u �u

5. Consider the adiabatic limit of a pumping cycle in a 1D crystal.

Which statement is true?

In the adiabatic limit,

a) the momentum- and time-resolved current through a cross section approaches zero.

b) the instantaneous current through a cross section approaches zero.

c) the number of particles pumped through a cross section during the whole cycle approaches zero.

d) More than one of the above statements is true.

6. Take the filled lower-energy band of a static,

insulating one-dimensional, two-band lattice model.

Assume a finite number N of unit cells, periodic boundary condition,

and real-valued hopping amplitudes.

Then,

a) the current carried by each occupied Bloch state is zero.

b) the net current carried by the electrons of the filled band is zero.

c) the net current carried by the electrons of the filled band is always finite.

d) the net current carried by the electrons of the filled band can be finite.
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Notes for lecture 5, current operator
(Dated: November 5, 2015)

1. Ehrenfest’s theorem is often stated as
d
dt hAi = �ih[A,H(t)]i.

Here, the average hOi corresponds to ...

a) the arithmetic mean of the diagonal elements of the operator O.

b) the expectation value of O in an arbitrary eigenstate  of the Hamiltonian H.

c) the expectation value of O in an arbitrary state  (t).

d) something else.

2. Consider the two-site system described by the Hamiltonian H = v�x.

The initial state at t = 0 is localized on the left site,  i(t = 0) = (1, 0).

How does the particle number NR(t) on the right site evolve in time?
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3. Consider the two-site system described by the Hamiltonian H = v�x.

The initial state at t = 0 is localized on the left site,  i(t = 0) = (1, 0).

How does the current into the right site, jintoR, evolve in time?

4. Consider the time-dependent two-site Hamiltonian H = u(t)�z + v(t)�x.

Which of the operators below represents the influx of particles into site R?

a) �v(t)�x

b) �v(t)�y

c) �iv(t)�y

d) �u(t)�y

u �u

5. Consider the adiabatic limit of a pumping cycle in a 1D crystal.

Which statement is true?

In the adiabatic limit,

a) the momentum- and time-resolved current through a cross section approaches zero.

b) the instantaneous current through a cross section approaches zero.

c) the number of particles pumped through a cross section during the whole cycle approaches zero.

d) More than one of the above statements is true.

6. Take the filled lower-energy band of a static,

insulating one-dimensional, two-band lattice model.

Assume a finite number N of unit cells, periodic boundary condition,

and real-valued hopping amplitudes.

Then,

a) the current carried by each occupied Bloch state is zero.

b) the net current carried by the electrons of the filled band is zero.

c) the net current carried by the electrons of the filled band is always finite.

d) the net current carried by the electrons of the filled band can be finite.
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Current in a two-site model

Notes for lecture 5, current operator
(Dated: November 3, 2015)

1. Ehrenfest’s theorem is often stated as
d
dt hAi = �ih[A,H]i.

Here, the average hOi corresponds to ...

a) the arithmetic mean of the diagonal elements of the operator O.

b) the expectation value of O in an arbitrary eigenstate  of the Hamiltonian H.

c) the expectation value of O in an arbitrary state  (t),

d) something else.

2. Consider the two-site system described by the Hamiltonian H = v�x.

The initial state at t = 0 is localized on the left site,  i(t = 0) = (1, 0).

How does the particle number NR(t) on the right site evolve in time?

3. Consider the two-site system described by the Hamiltonian H = v�x.

The initial state at t = 0 is localized on the left site,  i(t = 0) = (1, 0).

How does the current into the right site, jintoR, evolve in time?

4. Consider the time-dependent two-site Hamiltonian H = u(t)�z + v(t)�x.

Which of the operators below represents the influx of particles into site R?

a) �v(t)�x

b) �v(t)�y

c) �iv(t)�y

d) �u(t)�y

5. Consider the adiabatic limit of a pumping cycle in a 1D crystal.

Which statement is true?

In the adiabatic limit,

a) the momentum- and time-resolved current through a cross section approaches zero.

b) the instantaneous current through a cross section approaches zero.

c) the number of particles pumped through a cross section during the whole cycle approaches zero.

d) More than one of the above statements is true.

6. Take the filled lower-energy band of a static,

insulating one-dimensional, two-band lattice model.

Assume a finite number N of unit cells, periodic boundary condition,

and real-valued hopping amplitudes.

Then,

a) the current carried by each occupied Bloch state is zero.

b) the net current carried by the electrons of the filled band is zero.

c) the net current carried by the electrons of the filled band is always finite.

d) the net current carried by the electrons of the filled band can be finite.

7. Take the filled lower-energy band of a static,

insulating one-dimensional, two-band lattice model.

Assume a finite number N of unit cells, periodic boundary condition,

but now allow for complex-valued hopping amplitudes.

Then,

a) the current carried by each occupied Bloch state is zero.

b) the net current carried by the electrons of the filled band is zero.

c) the net current carried by the electrons of the filled band is always finite.

d) the net current carried by the electrons of the filled band can be finite.
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dt hAi = �ih[A,H]i.

Here, the average hOi corresponds to ...

a) the arithmetic mean of the diagonal elements of the operator O.

b) the expectation value of O in an arbitrary eigenstate  of the Hamiltonian H.

c) the expectation value of O in an arbitrary state  (t),

d) something else.

2. Consider the two-site system described by the Hamiltonian H = v�x.

The initial state at t = 0 is localized on the left site,  i(t = 0) = (1, 0).

How does the particle number NR(t) on the right site evolve in time?

3. Consider the two-site system described by the Hamiltonian H = v�x.

The initial state at t = 0 is localized on the left site,  i(t = 0) = (1, 0).

How does the current into the right site, jintoR, evolve in time?

4. Consider the time-dependent two-site Hamiltonian H = u(t)�z + v(t)�x.

Which of the operators below represents the influx of particles into site R?

a) �v(t)�x

b) �v(t)�y

c) �iv(t)�y

d) �u(t)�y

5. Consider the adiabatic limit of a pumping cycle in a 1D crystal.

Which statement is true?

In the adiabatic limit,

a) the momentum- and time-resolved current through a cross section approaches zero.

b) the instantaneous current through a cross section approaches zero.

c) the number of particles pumped through a cross section during the whole cycle approaches zero.

d) More than one of the above statements is true.

6. Take the filled lower-energy band of a static,

insulating one-dimensional, two-band lattice model.

Assume a finite number N of unit cells, periodic boundary condition,

and real-valued hopping amplitudes.

Then,

a) the current carried by each occupied Bloch state is zero.

b) the net current carried by the electrons of the filled band is zero.

c) the net current carried by the electrons of the filled band is always finite.

d) the net current carried by the electrons of the filled band can be finite.

7. Take the filled lower-energy band of a static,

insulating one-dimensional, two-band lattice model.

Assume a finite number N of unit cells, periodic boundary condition,

but now allow for complex-valued hopping amplitudes.

Then,

a) the current carried by each occupied Bloch state is zero.

b) the net current carried by the electrons of the filled band is zero.

c) the net current carried by the electrons of the filled band is always finite.
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Notes for lecture 5, current operator
(Dated: November 5, 2015)

1. Ehrenfest’s theorem is often stated as
d
dt hAi = �ih[A,H(t)]i.

Here, the average hOi corresponds to ...

a) the arithmetic mean of the diagonal elements of the operator O.

b) the expectation value of O in an arbitrary eigenstate  of the Hamiltonian H.

c) the expectation value of O in an arbitrary state  (t).

d) something else.

2. Consider the two-site system described by the Hamiltonian H = v�x.

The initial state at t = 0 is localized on the left site,  i(t = 0) = (1, 0).

How does the particle number NR(t) on the right site evolve in time?

L R

3. Consider the two-site system described by the Hamiltonian H = v�x.

The initial state at t = 0 is localized on the left site,  i(t = 0) = (1, 0).

How does the current into the right site, jintoR, evolve in time?

4. Consider the time-dependent two-site Hamiltonian H = u(t)�z + v(t)�x.

Which of the operators below represents the influx of particles into site R?

a) �v(t)�x

b) �v(t)�y

c) �iv(t)�y

d) �u(t)�y

u �u

5. Consider the adiabatic limit of a pumping cycle in a 1D crystal.

Which statement is true?

In the adiabatic limit,

a) the momentum- and time-resolved current through a cross section approaches zero.

b) the instantaneous current through a cross section approaches zero.

c) the number of particles pumped through a cross section during the whole cycle approaches zero.

d) More than one of the above statements is true.

6. Take the filled lower-energy band of a static,

insulating one-dimensional, two-band lattice model.

Assume a finite number N of unit cells, periodic boundary condition,

and real-valued hopping amplitudes.

Then,

a) the current carried by each occupied Bloch state is zero.

b) the net current carried by the electrons of the filled band is zero.

c) the net current carried by the electrons of the filled band is always finite.

d) the net current carried by the electrons of the filled band can be finite.

7.

Notes for lecture 5, current operator
(Dated: November 5, 2015)

1. Ehrenfest’s theorem is often stated as
d
dt hAi = �ih[A,H(t)]i.

Here, the average hOi corresponds to ...

a) the arithmetic mean of the diagonal elements of the operator O.

b) the expectation value of O in an arbitrary eigenstate  of the Hamiltonian H.

c) the expectation value of O in an arbitrary state  (t).

d) something else.

2. Consider the two-site system described by the Hamiltonian H = v�x.

The initial state at t = 0 is localized on the left site,  i(t = 0) = (1, 0).

How does the particle number NR(t) on the right site evolve in time?

L R

3. Consider the two-site system described by the Hamiltonian H = v�x.

The initial state at t = 0 is localized on the left site,  i(t = 0) = (1, 0).

How does the current into the right site, jintoR, evolve in time?

4. Consider the time-dependent two-site Hamiltonian H = u(t)�z + v(t)�x.

Which of the operators below represents the influx of particles into site R?

a) �v(t)�x

b) �v(t)�y

c) �iv(t)�y

d) �u(t)�y

u �u

5. Consider the adiabatic limit of a pumping cycle in a 1D crystal.

Which statement is true?

In the adiabatic limit,

a) the momentum- and time-resolved current through a cross section approaches zero.

b) the instantaneous current through a cross section approaches zero.

c) the number of particles pumped through a cross section during the whole cycle approaches zero.

d) More than one of the above statements is true.

6. Take the filled lower-energy band of a static,

insulating one-dimensional, two-band lattice model.

Assume a finite number N of unit cells, periodic boundary condition,

and real-valued hopping amplitudes.

Then,

a) the current carried by each occupied Bloch state is zero.

b) the net current carried by the electrons of the filled band is zero.

c) the net current carried by the electrons of the filled band is always finite.

d) the net current carried by the electrons of the filled band can be finite.
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Current in a two-site model II.

Notes for lecture 5, current operator
(Dated: November 3, 2015)

1. Ehrenfest’s theorem is often stated as
d
dt hAi = �ih[A,H]i.

Here, the average hOi corresponds to ...

a) the arithmetic mean of the diagonal elements of the operator O.

b) the expectation value of O in an arbitrary eigenstate  of the Hamiltonian H.

c) the expectation value of O in an arbitrary state  (t),

d) something else.

2. Consider the two-site system described by the Hamiltonian H = v�x.

The initial state at t = 0 is localized on the left site,  i(t = 0) = (1, 0).

How does the particle number NR(t) on the right site evolve in time?

3. Consider the two-site system described by the Hamiltonian H = v�x.

The initial state at t = 0 is localized on the left site,  i(t = 0) = (1, 0).

How does the current into the right site, jintoR, evolve in time?

4. Consider the time-dependent two-site Hamiltonian H = u(t)�z + v(t)�x.

Which of the operators below represents the influx of particles into site R?
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Notes for lecture 5, current operator
(Dated: November 5, 2015)

1. Ehrenfest’s theorem is often stated as d
dt hAi = �ih[A,H(t)]i.

Here, the average hOi corresponds to ...

a) the arithmetic mean of the diagonal elements of the operator O.
b) the expectation value of O in an arbitrary eigenstate  of the Hamiltonian H.
c) the expectation value of O in an arbitrary state  (t).
d) something else.

2. Consider the two-site system described by the Hamiltonian H = v�x.
The initial state at t = 0 is localized on the left site,  i(t = 0) = (1, 0).
How does the particle number NR(t) on the right site evolve in time?
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3. Consider the two-site system described by the Hamiltonian H = v�x.
The initial state at t = 0 is localized on the left site,  i(t = 0) = (1, 0).
How does the current into the right site, jintoR, evolve in time?
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a) �v(t)�x

b) �v(t)�y
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5. Consider the 5-atom molecule shown on the right.
The spatial structure of the nonzero hopping amplitudes is indicated by the graph.
Otherwise, hopping amplitudes and on-site energies are arbitrary.

Denote the current operator describing the influx of electrons into the orange segment as ĵS .
The matrix representation of ĵS in the real-space basis (shown in the figure) is a 5x5 matrix.

How many nonzero elements does it have?

a) 3

b) 6

c) 8

d) 10

6. Consider the adiabatic limit of a quasi-adiabatic pumping cycle in a 1D crystal.
Which statement is true?

In the adiabatic limit,

a) the momentum- and time-resolved current through a cross section approaches zero.

b) the time-resolved current through a cross section approaches zero.

c) the number of particles pumped through a cross section during the whole cycle approaches zero.

d) More than one of the above statements is true.



Adiabatic limit of a quasi-adiabatic pumping cycle
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Then,
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Current from a filled band?
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9. Consider a spin aligned with a B-field along z.

Adiabatically rotate the B-field 360 degrees in the x-z plane,

such that it returns to its original alignment at the end of the cycle:

H(t) = B(t) · �, where B(t) = B(sin(2⇡t/T ), 0, cos(2⇡t/T )).

Let us describe the instantaneous ground state of

this Hamiltonian with the parallel-transport

time parametrization that starts with  (t = 0) = (0, 1).

What is the value of this parametrization in the final point t = T?

a)  (T ) = (0, 1)

b)  (T ) = �(0, 1)

c)  (T ) = e
iBT

(0, 1)

d)  (T ) = �e
iBT

(0, 1)

x y z
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Adiabatic pumping in finite chain

4.1 Charge pumping in a control freak way 53

This period, shown in Fig. 4.1 a), is assumed to then be repeated. Note that we
shifted the beginning time of the sequence: now at times t/T = n 2 Z, the Hamil-
tonian is the trivial SSH model, t/T = n+ 1/4, disconnected monomers, at times
t/T = n+1/2, it is the nontrivial SSH model.

The time-dependent bulk momentum-space Hamiltonian reads

Ĥ(k, t) = d(k, t)ŝ = (v(t)+w(t)cosk)ŝx +w(t)sinkŝy +u(t)ŝz, (4.6)

which can be represented graphically as the path of the vector d(k, t) as the quasi-
momentum goes through the Brillouin zone, k : 0 ! 2p , for various fixed values of
time t, as in Fig. 4.1 (b).

Fig. 4.1 The control freak pump sequence in the Rice-Mele model. The sequence is defined via
Eqs. (4.5) and (4.6). (a) Time dependence of the hopping amplitudes v, w and the sublattice po-
tential u. (b) The surface formed by the vector d(k, t) corresponding to the bulk momentum-space
Hamiltonian. The topology of the surface is a torus, but its parts corresponding to t 2 [0,0.25]T
and t 2 [0.75,1]T are infinitely thin and appear as a line due to the vanishing value of w in these
time intervals. (c) Instantaneous spectrum of the Hamiltonian Ĥ(t) of an open chain of N = 10
sites. Red (blue) points represent states that are localized in the rightmost (leftmost) unit cells and
have energies between -1 and 1.

Fig: control freak cycle 
from the book, N = 10

Initial state: ground state with 10 
electrons.  

How many cycles should we pump 
to arrive to the ground state again? 

(a) 1 

(b)2 

(c) 10 

(d)20
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