Convolutional Neural Networks

Tamás Gábor

Seminar KF3

Budapest University of Technology and Economics 27.09.2019

Overview

Artificial Intelligence

Machine Learning

Neural Networks

Deep Neural Networks

The rise of neural networks

Growing availability of cheap cloud computing and GPUs
 Large amounts of data, new open-source tools

Perceptron

M Ű E G Y E T E M 1 7 8 2

Artificial neural network – 1 hidden layer

Artificial neural network – 2 hidden layers

Deep Convolutional Neural Networks

Convolutional layers

Convolutional layers

Activation - ReLU

Pooling

Cats vs dogs with a CNN

- ♥ Supervised learning
- ♦ 8000 pictures for training

Train-validation-test split

- ✤ <u>Training dataset</u> (6400 pictures) The sample of data used to fit the model.
- ♦ Validation dataset (1600 pictures)

Provides an unbiased evaluation of a model fit on the training dataset while tuning model hyperparameters.

<u>Test dataset</u> (2000 pictures, unknown labels) Provides an unbiased evaluation of a final model fit on the training dataset.

Difficulties

- ♥ Large hyperparameter search space
- ♦ Small training dataset -> data augmentation
- ♥ Overfitting

Simple CNN for image classification

cnn_model = Sequential()

```
cnn_model.add(Conv2D(32, (3, 3), use_bias=False, input_shape=input_shape))
cnn_model.add(Activation("relu"))
cnn_model.add(MaxPooling2D((2, 2)))
```

```
cnn_model.add(Flatten())
cnn_model.add(Dense(100, use_bias=False))
cnn_model.add(Activation("relu"))
cnn_model.add(Dense(1, activation='sigmoid'))
```


Accuracy for different network architectures

Accuracy for different network architectures

Accuracy for different network architectures

Winning network architecture (96 % accuracy)

```
cnn_model = Sequential()
```

```
cnn model.add(Conv2D(32, (3, 3), activation = 'elu', input shape=input shape))
cnn model.add(BatchNormalization())
cnn model.add(MaxPooling2D((2, 2)))
cnn model.add(Conv2D(32, (3, 3), activation = 'elu', input shape=input shape))
cnn model.add(BatchNormalization())
cnn model.add(MaxPooling2D((2, 2)))
cnn model.add(Conv2D(64, (3, 3), activation = 'elu'))
cnn model.add(BatchNormalization())
cnn model.add(MaxPooling2D((2, 2)))
cnn model.add(Conv2D(128, (3, 3), activation = 'elu'))
cnn model.add(BatchNormalization())
cnn model.add(MaxPooling2D((2, 2)))
cnn model.add(Conv2D(128, (3, 3), activation = 'elu'))
cnn model.add(BatchNormalization())
cnn model.add(MaxPooling2D((2, 2)))
cnn model.add(Flatten())
cnn model.add(Dropout(0.5)) #Dropout for regularization
cnn model.add(Dense(256, activation='relu'))
cnn model.add(Dense(128, activation='relu'))
cnn model.add(Dense(1, activation='sigmoid'))
cnn model.compile(optimizer = Adam(), loss = "binary crossentropy", metrics=["accuracy"])
```


Deep Convolutional Neural Networks as strong gravitational lens detectors

Schaefer, C. et al., Astronomy & Astrophysics 611 (2018)

Matter that through the bending of space in its gravitational field alters the direction of light passing nearby.

www.eso.org

A light source passes behind a gravitational lens

Strong Lensing challenge by the BLF

CNNs used for lens finding

CONV

conv

conv

CONV

CONV

conv.

CONV

 \mathbf{fc}

fc

fc

CNNs used for lens finding

18

Possible pitfalls

- ♥ Black-box solutions
- ♥ Solving the wrong problem

Figure 11: Raw data and explanation of a bad model's prediction in the "Husky vs Wolf" task.

Ribeiro MT et al. Why should i trust you?: Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining 2016 Aug 13 (pp. 1135-1144). ACM.

Automated feature extraction

- Solution of complex problems
- A complement to critical thinking and human expertise

My presentation is based on the following online article: Neural networks, explained – written by Janelle Shane https://physicsworld.com/a/neural-networks-explained/

- ♦ Automated feature extraction
- Solution of complex problems
- A complement to critical thinking and human expertise

My presentation is based on the following online article: Neural networks, explained – written by Janelle Shane https://physicsworld.com/a/neural-networks-explained/

Thank you for your attention!

