Relativistic Effects on Atomic Properties

Peter Sari

- Special Relativity
- Relativistic calculation of atoms
- Changes of properties in heavier elements

Kenneth S. Pitzer: Relativistic effects on chemical properties (1978)

Peter Schwerdtfeger: Relativistic effects in properties of gold (2002)

Special Theory of Relativity

Albert Einstein (1905)

Physical laws have the same form in each inertial references.

In heavy atoms: Bohr radius's mass dependence

$$a_0 = rac{4\piarepsilon_0 \hbar^2}{m_{
m e} e^2} = rac{\hbar}{m_{
m e} c lpha}$$

Relativity in Atomic calculations

Many problems can be adequately approximated using the non-relativistic Schrödinger equation + rel. perturbations (such as spin-orbit interact.)

Heavier elements: high momentum electrons

Fully relativistic approach required.

Energy-momentum relation:

$${\hat E}^2\psi=c^2{\hat {f p}}\cdot{\hat {f p}}\psi+(mc^2)^2\psi$$
 ,

Dirac Equation

Anomalies: Lanthanide contraction, inert pair effect, unique properties of heavy elements (as gold or mercury), etc.

Table	1. Energy	Terms for Four	th Group Elements	in Electron Vol	ts.
•	Element X	Ionization Potential	X ₂ Bond D _o	Spin-Grbit 3P2-3P0	
	C	11.26	6.1	0.005	
	Si	8.15	3.2	. 03	
	Ge	7.88	2.8	.17	
	Sn	7.34	2.0	.42	
	РЬ	7.42	1.0	1.32	

Lanthanide Contraction

The decrease of the ionic radii of the elements in the lanhanide series.

Caused due to poor shielding of nuclear charge by the 4f electrons

- Shielding: s > p > d > f
- Lanthanides: increased effective core charge

Relativistic effect: The density of the s (and to a lesser degree p) electrons near the nucleus is high, thus these experience significant relativistic effects

Special relativity increases the contraction effect by about 10%.

Post-lanthanides

To measure the effect of the 4f electrons, calculations can be made on relativistic, non-relativistic, and pseudoatoms.

Increasing atomic number, the relativistic effects remain the same in magnitude, while the 4f effects decrease.

Note that the radius of d (and f) subshells increase in the relativistic case.

Table 3. Radii <r> in Å, Weighted Averages for Relativistic 5d and 6p.

	Pseudo-atom nonrelativ.			Real Atom nonrelativ.		Real Atom relativistic			
	5d	6s	6p	5d	6s	6p	5d	6s	6р
Hf	1.325	2.484		1.179	2.153	·	1.263	1.955	
Re	1.076	2.231		.952	1.955		. 992	1.734	
Au	.912	2.235		.817	1.958	•	.839	1.620	1 - A. J. A
Hg	.849	1.984		.758	1.761	. ,	.779	1.515	Ζ.
т1		1.762	2,245		1.570	2.078		1.365	2.036
Pb		1.613	1.986		1.442	1.829		1.266	1.783
Bi		1:499	1.805	1.4 1	1.373	1.660		1.187	1.614

Pseudo atom: 4f orbitals deleted, atomic charge reduced by 14

Gold (group 11)

The relativistic effects in gold are very significant. (~0.58c for 1s electrons, ~22% contraction)

Due to contraction and expansion effects, the plasma frequency shifts into the visible range.

Relativistic increase in gold's electronegativity causes anomalies in its bonding properties:

-*CsAu* forms non-metallic semicond.

-High IP: difficult to oxidize

- -5d participation: strong covalent bonds
- -Aurophilicity (~28% of binding energy)
- -Bond distance contraction

FIGURE 4 Nonrelativistic (NR) and relativistic (R) ionization potentials and electron affinities of the group 11 atoms. Data from Refs. [20] and [21].

Other relativistic phenomena

- -Mercury is liquid at room temperature (~120 °C change in melting point)
- -Metallophilic interactions in general
- -Inert pair effect
- -Lead forms FCC lattice instead of diamond