Anomalous decay of coherence in a dissipative many-body system¹

Márton Borsi

MSc Seminar, 08 November 2019

¹Bouganne, R., Aguilera, M. B., Ghermaoui, A., Beugnon, J., Gerbier, F. (2019). Anomalous decay of coherence in a dissipative many-body system. Nature Physics, 1-5.

- Destruction of interference phenomena due to couplings with the environment.
- Should be countered in quantum technology.
- Interaction of particles alters the dissipative dynamics \Rightarrow strongly correlated systems are challenging.
- Experimental realizations: ultracold atoms

Bose-Hubbard model

$$\mathcal{H}_{\mathsf{BH}} = -J \sum_{\langle i,j \rangle} a_i^{\dagger} a_j + \sum_i \left(\frac{U}{2} n_i (n_i - 1) + V_i n_i \right)$$
(1)

- J: nearest neighbour tunneling energy
- U: repulsive on-site interaction
- V_i: harmonic potential of the lattice

Phase transition:

 $\frac{U}{J}$, $\frac{V_i}{J}$ low superfluid atoms spread out over the lattice long range coherence $\frac{U}{J}$, $\frac{V_i}{J}$ high Mott insulator atoms localized at sites low coherence

・ロト ・ 一下・ ・ ヨト ・ 日 ・

 \rightarrow

Theoretical predictions²

For strongly interacting bosonic quantum gases:

- Slowly relaxing states emerge
- Anomalous diffusion in momentum space

- Nearest neighbour coherence: $C_{nn} \sim \frac{1}{\sqrt{t}}$
 - algebraic (slow), not exponential (fast) decoherence!

²Poletti, D., Barmettler, P., Georges, A., Kollath, C. (2013). Emergence of glasslike dynamics for dissipative and strongly interacting bosons. Physical review letters, 111(19), 195301.

Experimental setup

- Ultracold, bosonic ¹⁷⁴Yb atoms
- Independent 2 dimensional optical lattices (V_{\perp} lattice depth)

- Dissipation: laser excitation ⇒ repeated absorption spontaneous emission cycles
- Measuring distribution in momentum space

- 4 同 6 4 日 6 4 日 6

Momentum space

Time evolution of the peak amplitude:

Márton Borsi

Anomalous diffusion

Time evolution of the momentum width Δk :

 \Rightarrow subdiffusion: lower power law than 1/2

Nearest neighbour coherence

Márton Borsi

- Bose-Hubbard model: theoretical predictions for dissipative dynamics
- Experimental relization
 - ultracold atoms on optical lattices
 - dissipation: spontaneous emission
- Verified phenomena:
 - subdiffusion (< $\frac{1}{2}$ power law)
 - algebraic decoherence $(1/\sqrt{t})$